- 
				Imaging through scattering media, such as clouds, biological tissues, and seawater, has broad application prospects in transportation, medical diagnosis, and information technology. Researchers have proposed various techniques to obtain images from scattered light passing through the scattering media, among which speckle correlation imaging has developed rapidly. Speckle correlation imaging requires non-coherent light sources due to the requirement of memory effect. This requirement makes the imaging device complex, and the light source utilization rate low. Additionally, this method is limited in its application under the illumination of spatially coherent light sources. This paper proposes a new method of speckle correlation imaging based on the illumination of spatially coherent light, which is achieved by multiplexing different polarization direction speckle patterns, called polarization multiplexing scattering imaging. To achieve the decoherence of the light source, previous approaches have used a rotating scattering medium to generate time-varying speckle patterns that are integrated over the shutter time of the camera to eliminate coherent noise, or multiplexed wavelength-dependent speckle multiplexing to achieve this. This paper uses spatially incoherent light sources to obtain different polarization direction speckle patterns by rotating polarizers placed in the illumination path. These patterns are superimposed and averaged, and phase recovery algorithm is used to reconstruct the object image. This experiment uses Ping-Pang (PP) algorithm with fusion error reduction and hybrid input-output algorithm to reconstruct targets quickly and with high quality. The comparison of the reconstruction results of different numbers of reused speckle patterns demonstrates that using more speckle patterns can achieve better image quality. Compared with conventional speckle correlation imaging technology, the proposed method reduces the requirements of light sources, improves the utilization rate of light sources, and makes the device simpler and more compact. Experimental results show that this method is feasible and has strong environmental adaptability, which can expand the application scope of speckle correlation imaging methods.- 
										Keywords:
										
- scattering imaging /
- polarization /
- memory effect /
- autocorrelation
 [1] Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309  Google Scholar Google Scholar[2] Katz O, Small E, Silberberg Y 2012 Nat. Photonics 6 549  Google Scholar Google Scholar[3] Mosk A P, Lagendijk A, Lerosey G, Fink M 2012 Nat. Photonics 6 283  Google Scholar Google Scholar[4] Zhuang H C, He H X, Xie X S, Zhou J Y 2016 Sci. Rep. 6 32696  Google Scholar Google Scholar[5] Edrei E, Scarcelli G 2016 Sci. Rep. 6 33558  Google Scholar Google Scholar[6] Xie X S, Zhuang H C, He H X, Xu X Q, Liang H W, Liu Y K, Zhou J Y 2018 Sci. Rep. 8 4585  Google Scholar Google Scholar[7] Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S 2010 Phys. Rev. Lett. 104 100601  Google Scholar Google Scholar[8] Popoff S, Lerosey G, Fink M, Boccara A C, Gigan S 2010 Nat. Commun. 1 81  Google Scholar Google Scholar[9] Hofer M, Brasselet S 2019 Opt. Lett. 44 2137  Google Scholar Google Scholar[10] Freund I, Rosenbluh M, Feng S 1988 Phys. Rev. Lett. 61 2328  Google Scholar Google Scholar[11] Katz O, Heidmann P, Fink M, Gigan S 2014 Nat. Photonics 8 784  Google Scholar Google Scholar[12] Li X H, Greenberg J A, Gehm M E 2019 Optica 6 864  Google Scholar Google Scholar[13] Song P M, Jiang S W, Zhang H, Bian Z C, Guo C F, Hoshino K, Zheng G A 2019 Opt. Lett. 44 3645  Google Scholar Google Scholar[14] Horisaki R, Okamoto Y, Tanida J 2019 Opt. Lett. 44 4032  Google Scholar Google Scholar[15] Yang W Q, Li G W, Situ G H 2018 Sci. Rep. 8 9614  Google Scholar Google Scholar[16] Ma R, Wang Z, Zhang H H, Zhang W L, Rao Y J 2020 Opt. Lett. 45 4352  Google Scholar Google Scholar[17] Ma R, Wang Z, Wang W Y, Zhang Y, Liu J, Zhang W L, Gomes A S L, Fan D Y 2021 Opt. Lasers Eng. 141 106567  Google Scholar Google Scholar[18] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏 2021 70 224203  Google Scholar Google ScholarSun X Y, Liu F, Duan J B, Niu G T, Shao X P 2021 Acta Phys. Sin. 70 224203  Google Scholar Google Scholar[19] Goodman J W 2006 Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers) pp66–77 [20] Bertolotti J, Van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P 2012 Nature 491 232  Google Scholar Google Scholar[21] Fienup J R 1982 Appl. Optics 21 2758  Google Scholar Google Scholar[22] Hofer M, Soeller C, Brasselet S, Bertolotti J 2018 Opt. Express 26 9866  Google Scholar Google Scholar[23] 肖晓, 杜舒曼, 赵富, 王晶, 刘军, 李儒新 2019 68 034201  Google Scholar Google ScholarXiao X, Du S M, Zhao F, Wang J, Liu J, Li R X 2019 Acta Phys. Sin. 68 034201  Google Scholar Google Scholar[24] Edrei E, Scarcelli G 2016 Optica 3 71  Google Scholar Google Scholar
- 
				
    
    
    图 4 偏振复用散射相关成像 (a1), (b2), (c2), (d2), (e2)自相关; (a2)物体; (b1), (c1), (d1), (e1)散斑图案; (b3), (c3), (d3), (e3)重建图案 Figure 4. Polarization multiplexed speckle correlation imaging: (a1), (b2), (c2), (d2), (e2) The autocorrelation; (a2) the object; (b1), (c1), (d1), (e1) speckle pattern; (b3), (c3), (d3), (e3) reconstruction pattern. 
- 
				
[1] Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309  Google Scholar Google Scholar[2] Katz O, Small E, Silberberg Y 2012 Nat. Photonics 6 549  Google Scholar Google Scholar[3] Mosk A P, Lagendijk A, Lerosey G, Fink M 2012 Nat. Photonics 6 283  Google Scholar Google Scholar[4] Zhuang H C, He H X, Xie X S, Zhou J Y 2016 Sci. Rep. 6 32696  Google Scholar Google Scholar[5] Edrei E, Scarcelli G 2016 Sci. Rep. 6 33558  Google Scholar Google Scholar[6] Xie X S, Zhuang H C, He H X, Xu X Q, Liang H W, Liu Y K, Zhou J Y 2018 Sci. Rep. 8 4585  Google Scholar Google Scholar[7] Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S 2010 Phys. Rev. Lett. 104 100601  Google Scholar Google Scholar[8] Popoff S, Lerosey G, Fink M, Boccara A C, Gigan S 2010 Nat. Commun. 1 81  Google Scholar Google Scholar[9] Hofer M, Brasselet S 2019 Opt. Lett. 44 2137  Google Scholar Google Scholar[10] Freund I, Rosenbluh M, Feng S 1988 Phys. Rev. Lett. 61 2328  Google Scholar Google Scholar[11] Katz O, Heidmann P, Fink M, Gigan S 2014 Nat. Photonics 8 784  Google Scholar Google Scholar[12] Li X H, Greenberg J A, Gehm M E 2019 Optica 6 864  Google Scholar Google Scholar[13] Song P M, Jiang S W, Zhang H, Bian Z C, Guo C F, Hoshino K, Zheng G A 2019 Opt. Lett. 44 3645  Google Scholar Google Scholar[14] Horisaki R, Okamoto Y, Tanida J 2019 Opt. Lett. 44 4032  Google Scholar Google Scholar[15] Yang W Q, Li G W, Situ G H 2018 Sci. Rep. 8 9614  Google Scholar Google Scholar[16] Ma R, Wang Z, Zhang H H, Zhang W L, Rao Y J 2020 Opt. Lett. 45 4352  Google Scholar Google Scholar[17] Ma R, Wang Z, Wang W Y, Zhang Y, Liu J, Zhang W L, Gomes A S L, Fan D Y 2021 Opt. Lasers Eng. 141 106567  Google Scholar Google Scholar[18] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏 2021 70 224203  Google Scholar Google ScholarSun X Y, Liu F, Duan J B, Niu G T, Shao X P 2021 Acta Phys. Sin. 70 224203  Google Scholar Google Scholar[19] Goodman J W 2006 Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers) pp66–77 [20] Bertolotti J, Van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P 2012 Nature 491 232  Google Scholar Google Scholar[21] Fienup J R 1982 Appl. Optics 21 2758  Google Scholar Google Scholar[22] Hofer M, Soeller C, Brasselet S, Bertolotti J 2018 Opt. Express 26 9866  Google Scholar Google Scholar[23] 肖晓, 杜舒曼, 赵富, 王晶, 刘军, 李儒新 2019 68 034201  Google Scholar Google ScholarXiao X, Du S M, Zhao F, Wang J, Liu J, Li R X 2019 Acta Phys. Sin. 68 034201  Google Scholar Google Scholar[24] Edrei E, Scarcelli G 2016 Optica 3 71  Google Scholar Google Scholar
Catalog
Metrics
- Abstract views: 6728
- PDF Downloads: 133
- Cited By: 0


 
					 
		         
	         
  
					 
												






 
							 DownLoad:
DownLoad: 
				 
							 
							 
							