搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低损耗大带宽双芯负曲率太赫兹光纤偏振分束器

惠战强 高黎明 刘瑞华 韩冬冬 汪伟

引用本文:
Citation:

低损耗大带宽双芯负曲率太赫兹光纤偏振分束器

惠战强, 高黎明, 刘瑞华, 韩冬冬, 汪伟

Dual-core negative curvature fiber-based terahertz polarization beam splitter with ultra-low loss and wide bandwidth

Hui Zhan-Qiang, Gao Li-Ming, Liu Rui-Hua, Han Dong-Dong, Wang Wei
PDF
HTML
导出引用
  • 设计了一种基于双芯负曲率光纤的新型低损耗大带宽太赫兹偏振分束器, 该器件以环烯烃共聚物为基底, 沿圆周等间距分布着12个含内嵌管的圆形管, 通过上下对称的两组外切小包层管将纤芯分成双芯. 采用时域有限差分法对其导模特性进行分析, 详细研究了各个参数对其偏振分束特性的影响, 分析了该偏振分束器的消光比、带宽、传输损耗等性能. 仿真结果表明: 当入射光频率为1 THz, 分束器长度为6.224 cm时, x偏振光的消光比达到120.8 dB, 带宽为0.024 THz, y偏振光的消光比达到63.74 dB, 带宽为0.02 THz, 传输总损耗低至0.037 dB/cm. 公差分析表明结构参数在±1%的偏差下, 偏振分束器仍然可以保持较好的性能.
    A novel terahertz polarization beam splitter (PBS) with low loss and large bandwidth based on double core negative curvature fiber is designed. The device takes copolymers of cycloolefin as the substrate, and 12 circular tubes with embedded tubes are evenly distributed along the circumference. The fiber core is divided into two cores through two groups of circumscribed small clad tubes symmetrical up and down. The finite-difference time-domain (FDTD) method is used to analyze its guide mode properties. The effects of various structural parameters on its beam splitting characteristics are investigated in detail, and the extinction ratio (ER), bandwidth and transmission loss of the PBS are analyzed. The simulation results show that when the incident light frequency is 1THz and the beam splitter length is 6.224 cm, the ER of x-polarized light reaches 120.8 dB, the bandwidth with ER above 20 dB is 0.024 THz, the ER of y-polarized light reaches 63.74 dB, the bandwidth with ER above 20 dB is 0.02THz, and the total transmission loss is as low as 0.037 dB/cm. Tolerance analysis shows that the PBS can still maintain good performance under the ±1% deviation of structural parameters.
      通信作者: 惠战强, zhanqianghui@xupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61875165, 61775180, 61772417)、陕西省教育厅协同创新项目(批准号: 20JY060)和西安邮电大学研究生创新工作站(批准号: YJGJ201905)资助的课题
      Corresponding author: Hui Zhan-Qiang, zhanqianghui@xupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61875165, 61775180, 61772417), the Collaborative Innovation Projects of Education Office of Shaanxi Province, China (Grant No. 20JY060), and the Graduates’ Creative Workstation of Xi’an University of Posts and Telecommunications, China (Grant No. YJGJ201905)
    [1]

    Costa D, Yacoub M 2008 Electron. Lett. 44 214Google Scholar

    [2]

    Xu J, Zhang X C 2006 Appl. Phys. Lett. 88 151107Google Scholar

    [3]

    Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266Google Scholar

    [4]

    Liu H B, Plopper G, Earley S, Chen Y Q, Ferguson B, Zhang X C 2007 Biosens. Bioelectron. 22 1075Google Scholar

    [5]

    孟淼, 严德贤, 李九生, 孙帅 2020 69 167801Google Scholar

    Meng M, Yan D X, Li J S, Sun S 2020 Acta Phys. Sin. 69 167801Google Scholar

    [6]

    Hui Z Q, Zhang T T, Han D D, Zhao F, Zhang M Z, Gong J M 2021 J. Infrared Millimeter Waves 40 616Google Scholar

    [7]

    Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S, Zhang H W 2018 Adv. Opt. Mater. 6 1700620Google Scholar

    [8]

    Su X Q, Ouyang C M, Xu N N, Cao W, Wei X, Song G F, Gu J Q, Tian Z, O’Hara J F, Han J G, Zhang W L 2015 Opt. Express 23 27152Google Scholar

    [9]

    Li J S, Xu D G, Yao J Q 2010 Appl. Opt. 49 4494Google Scholar

    [10]

    Li J S, Zouhdi S 2012 IEEE Photonics Technol. Lett. 24 625Google Scholar

    [11]

    Li D, Li J S 2020 Opt. Commun. 472 125862Google Scholar

    [12]

    Xiong H, Ji Q, Bashir T, Yang F 2020 Opt. Express 28 13884Google Scholar

    [13]

    Galan J V, Sanchis P, Garcia J, Blasco J, Martinez A, Martí J 2009 Appl. Opt. 48 2693Google Scholar

    [14]

    Ren L S, Jiao Y C, Li F, Zhao J J, Zhao G 2011 IEEE Antennas Wirel. Propag. Lett. 10 407Google Scholar

    [15]

    Liu H, Li J S 2014 Optoelectron. Lett. 10 325Google Scholar

    [16]

    Niu T M, Withayachumnankul W, Upadhyay A, Gutruf P, Abbott D, Bhaskaran M, Sriram S, Fumeaux C 2014 Opt. Express 22 16148Google Scholar

    [17]

    Lai W, Born N, Schneider L M, Rahimi-Iman A, Balzer J C, Koch M 2015 Opt. Mater. Express 5 2812Google Scholar

    [18]

    Li S S, Zhang H, Bai J, Liu W W, Jiang Z W, Chang S J 2014 IEEE Photonics Technol. Lett. 26 1399Google Scholar

    [19]

    Li S S, Zhang H, Hou Y, Bai J J, Liu W W, Chang S J 2013 Appl. Opt. 52 3305Google Scholar

    [20]

    Chen H Z, Yan G F, Forsberg E, He S L 2016 Appl. Opt. 55 6236Google Scholar

    [21]

    汪静丽, 刘洋, 钟凯 2017 66 024209Google Scholar

    Wang J L, Liu Y, Zhong K 2017 Acta Phys. Sin. 66 024209Google Scholar

    [22]

    Zhu Y F, Liu X, Rao C F, Zhong H, Luo H M, Chen Y H, Ye Z Q, Wang H 2018 Opt. Eng. 57 086112Google Scholar

    [23]

    Wang B K, Tian F J, Liu G Y, Bai R L, Yang X H, Zhang J Z 2021 Opt. Commun. 480 126463Google Scholar

    [24]

    Benabid F, Knight J C, Antonopoulos G, Russell P 2002 Science 298 399Google Scholar

    [25]

    Pearce G J, Wiederhecker G S, Poulton C G, Burger S, Russell P S J 2007 Opt. Express 15 12680Google Scholar

    [26]

    Islam M S, Sultana J, Rana S, Islam M R, Faisal M, Kaijage S F, Abbott D 2017 Opt. Fiber Technol. 34 6Google Scholar

    [27]

    Nielsen K, Rasmussen H K, Adam A J L, Planken P C M, Bang O, Jepsen P U 2009 Opt. Express 17 8592Google Scholar

    [28]

    Khanarian G, Celanese H 2001 Opt. Eng. 40 1024Google Scholar

    [29]

    Hou M X, Zhu F, Wang Y, Wang Y P, Liao C R, Liu S, Lu P X 2016 Opt. Express 24 27890Google Scholar

    [30]

    Ding W, Wang Y Y 2015 Opt. Express 23 21165Google Scholar

    [31]

    Florous N J, Saitoh K, Koshiba M 2006 IEEE Photonics Technol. Lett. 18 1231Google Scholar

    [32]

    Qu Y W, Yuan J H, Zhou X, Li F, Yan B B, Wu Q, Wang K R, Sang X Z, Long K P, Yu C X 2020 J. Opt. Soc. Am. B 37 396410Google Scholar

    [33]

    Zhang Y N, Xue L, Qiao D, Guang Z 2019 Optik 207 163817Google Scholar

    [34]

    Wu Z Q, Zhou X Y, Xia H D, Shi Z H, Huang J, Jiang X D, Wu W D 2017 Appl. Opt. 56 2288Google Scholar

    [35]

    Cucinotta A, Selleri S, Vincetti L, Zoboli M 2002 J. Light Technol. 20 1433Google Scholar

    [36]

    Falkenstein P, Merritt C D, Justus B L 2004 Opt. Lett. 29 1858Google Scholar

    [37]

    Xian F, Mairaj A K, Hewak D, Monro T M 2005 J. Light Technol. 23 2046Google Scholar

    [38]

    Wang L L, Zhang Y N, Ren L Y, Wang X Z, Li T H, Hu B W, Li Y L, Zhao W, Chen X H 2005 Chin. Opt. Lett. 3 S94

    [39]

    Sultana J, Islam M S, Cordeiro C M B, Habib M S, Dinovitser A, Ng B, Abbott D 2020 IEEE Access 8 113309Google Scholar

    [40]

    Cruz A L S, Serrão V A, Barbosa C L, Franco M A R, Cordeiro C M B, Argyros A, Tang X L 2015 J. Microwaves, Optoelectron. Electromagn. Appl. 14 SI45

    [41]

    Van P L D, Gorecki J, Fokoua E N, Apostolopoulos V, Poletti F 2018 Appl. Opt. 57 3953Google Scholar

    [42]

    Kumar V, Varshney R K, Kumar S 2021 Results in Opt. 4 100094Google Scholar

    [43]

    Kumar V, Varshney R K, Kumar S 2020 Appl. Opt. 59 1974Google Scholar

    [44]

    Zhu Y F, Chen M Y, Wang H, Yao H B, Zhang Y K, Yang J C 2013 IEEE Photonics J. 5 7101410Google Scholar

    [45]

    Vera E R, Restrepo J Ú, Durango C J, Cardona J M, Cardona N G 2018 IEEE Photonics J. 10 1Google Scholar

    [46]

    Tian F J, Liu G Y, Luo J F, Yao C Y, Li L, Yang X H, Zhang J Z 2021 Optik 225 165862Google Scholar

  • 图 1  双芯负曲率光纤太赫兹偏振分束器横截面结构图

    Fig. 1.  Cross sectional structure of dual core negative curvature fiber terahertz polarization beam splitter.

    图 2  当固定参数r2 = 160 μm, r3 = 174.1 μm, Λ = 810 μm, t = 90 μm时, r1分别为375, 380, 385 μm时耦合长度和CLR与频率的变化关系图 (a)耦合长度; (b) CLR

    Fig. 2.  Variation of coupling length and CLR: (a) Coupling length on frequency when r1 varies from 375 to 385 μm when r2 = 160 μm, r3 = 174.1 μm, Λ = 810 μm, t = 90 μm; (b) CLR in x-polarization and y-polarization.

    图 3  当固定参数r1 = 380 μm, r3 = 174.1 μm, Λ = 810 μm, t = 90 μm时, r2分别为156, 160, 164 μm时耦合长度和CLR与频率的变化关系图 (a)耦合长度; (b) CLR

    Fig. 3.  Variation of coupling length and CLR: (a) Coupling length on frequency when r2 varies from 156 to 164 μm when r1 = 380 μm, r3 = 174.1 μm, Λ = 810 μm, t = 90 μm; (b) CLR in x-polarization and y-polarization.

    图 4  当固定参数r1 = 380 μm, r2 = 160 μm, Λ = 810 μm, t = 90 μm时, r3分别为170.1, 174.1, 178.1 μm时耦合长度和CLR与频率的变化关系图 (a)耦合长度; (b) CLR

    Fig. 4.  Variation of coupling length and CLR: (a) Coupling length on frequency when r3 varies from 170.1 to 178.1 μm when r1 = 380 μm, r2 = 160 μm, Λ = 810 μm, t = 90 μm; (b) CLR in x-polarization and y-polarization.

    图 5  当固定参数r1 = 380 μm, r2 = 160 μm, r3 = 174.1 μm, t = 90 μm时, Λ分别为805, 810, 815 μm时耦合长度和CLR与频率的变化关系图 (a)耦合长度; (b) CLR

    Fig. 5.  Variation of coupling length and CLR: (a) Coupling length on frequency when Λ varies from 805 to 815 μm when r1 = 380 μm, r2 = 160 μm, r3 = 174.1 μm, t = 90 μm; (b) CLR in x-polarization and y-polarization.

    图 6  当固定参数r1 = 380 μm, r2 = 160 μm, r3 = 174.1 μm, Λ = 810 μm时, t分别为87, 90, 93 μm时耦合长度和CLR与频率的变化关系图 (a)耦合长度; (b) CLR

    Fig. 6.  Variation of coupling length and CLR: (a) Coupling length on frequency when t varies from 87 to 93 μm when r1 = 380 μm, r2 = 160 μm, r3 = 174.1 μm, Λ = 810 μm; (b) CLR in x-polarization and y-polarization.

    图 7  双芯负曲率光纤太赫兹偏振分束器模场分布图 (a) x偏振偶模; (b) y偏振偶模; (c) x偏振奇模; (d) y偏振奇模

    Fig. 7.  Distributions of four supermodes in the proposed dual core negative curvature fiber terahertz polarization beam splitter: (a) x-polarized even mode; (b) y-polarized even mode; (c) x-polarized odd mode; (d) y-polarized odd mode.

    图 8  4个非简并模式的有效折射率随着频率的变化关系图

    Fig. 8.  Variation of effective refractive index with frequency.

    图 9  偏振分束器的双芯中归一化能量随着传输距离的变化关系图 (a) A芯; (b) B芯

    Fig. 9.  Normalized transmission power changes with distance in the dual core of polarization beam splitter: (a) Core A; (b) core B.

    图 10  偏振分束器的双芯输出端口消光比变化曲线图 (a) A芯; (b) B芯

    Fig. 10.  Variation curve of extinction ratio of dual core output port of polarization beam splitter: (a) Core A; (b) core B.

    图 11  偏振分束器的损耗随着频率的变化关系图 (a)限制损耗; (b)有效吸收损耗

    Fig. 11.  Variation of loss with frequency in the proposed dual core negative curvature fiber terahertz polarization beam splitter: (a) Confinement loss; (b) effective material loss.

    图 12  A芯中分别输入x偏振光和y偏振光时, 双芯的模式传输情况 (a) A芯中x偏振光; (b) B芯中x偏振光; (c) A芯中y偏振光; (d) B芯中y偏振光

    Fig. 12.  Mode transmission of dual core when x-polarized light and y-polarized light are input into core A respectively: (a) x-polarization in core A; (b) x-polarization in core B; (c) y-polarization in core A; (d) y-polarization in core B.

    图 13  各个参数分别在 ±1%误差情况下消光比的变化情况

    Fig. 13.  Change of extinction ratio of each parameter under ±1% error.

    图 14  所有参数在 ± 1%误差情况下消光比的变化情况 (a) A芯; (b) B芯

    Fig. 14.  Change of extinction ratio of all parameter under ± 1% error: (a) Core A; (b) core B.

    表 1  光纤型太赫兹PBS性能比较

    Table 1.  Performance comparison of optical fiber terahertz PBS.

    结构中心频率/THz消光比/dB工作带宽/THz传输损耗/(dB·cm–1)分束器长度/cm
    Zhu, Chen, et al. (2013)[44]173.860.0320.273.36
    Chen, Yan, et al. (2016)[20]0.6540.0130.281.43
    E. Reyes-Vera, et al. (2018)[45]1680.151.510.9
    Zhu, Liu, et al. (2018)[22]1700.0460.41.27
    Kumar, Varshney, et al. (2020)[42]0.75200.0310
    Tian, Liu, et al. (2021)[46]164.640.020.511.184
    Wang, Tian, et al. (2021)[23]120.80.010.150.865
    本文工作1120.80.0240.0376.224
    下载: 导出CSV
    Baidu
  • [1]

    Costa D, Yacoub M 2008 Electron. Lett. 44 214Google Scholar

    [2]

    Xu J, Zhang X C 2006 Appl. Phys. Lett. 88 151107Google Scholar

    [3]

    Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266Google Scholar

    [4]

    Liu H B, Plopper G, Earley S, Chen Y Q, Ferguson B, Zhang X C 2007 Biosens. Bioelectron. 22 1075Google Scholar

    [5]

    孟淼, 严德贤, 李九生, 孙帅 2020 69 167801Google Scholar

    Meng M, Yan D X, Li J S, Sun S 2020 Acta Phys. Sin. 69 167801Google Scholar

    [6]

    Hui Z Q, Zhang T T, Han D D, Zhao F, Zhang M Z, Gong J M 2021 J. Infrared Millimeter Waves 40 616Google Scholar

    [7]

    Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S, Zhang H W 2018 Adv. Opt. Mater. 6 1700620Google Scholar

    [8]

    Su X Q, Ouyang C M, Xu N N, Cao W, Wei X, Song G F, Gu J Q, Tian Z, O’Hara J F, Han J G, Zhang W L 2015 Opt. Express 23 27152Google Scholar

    [9]

    Li J S, Xu D G, Yao J Q 2010 Appl. Opt. 49 4494Google Scholar

    [10]

    Li J S, Zouhdi S 2012 IEEE Photonics Technol. Lett. 24 625Google Scholar

    [11]

    Li D, Li J S 2020 Opt. Commun. 472 125862Google Scholar

    [12]

    Xiong H, Ji Q, Bashir T, Yang F 2020 Opt. Express 28 13884Google Scholar

    [13]

    Galan J V, Sanchis P, Garcia J, Blasco J, Martinez A, Martí J 2009 Appl. Opt. 48 2693Google Scholar

    [14]

    Ren L S, Jiao Y C, Li F, Zhao J J, Zhao G 2011 IEEE Antennas Wirel. Propag. Lett. 10 407Google Scholar

    [15]

    Liu H, Li J S 2014 Optoelectron. Lett. 10 325Google Scholar

    [16]

    Niu T M, Withayachumnankul W, Upadhyay A, Gutruf P, Abbott D, Bhaskaran M, Sriram S, Fumeaux C 2014 Opt. Express 22 16148Google Scholar

    [17]

    Lai W, Born N, Schneider L M, Rahimi-Iman A, Balzer J C, Koch M 2015 Opt. Mater. Express 5 2812Google Scholar

    [18]

    Li S S, Zhang H, Bai J, Liu W W, Jiang Z W, Chang S J 2014 IEEE Photonics Technol. Lett. 26 1399Google Scholar

    [19]

    Li S S, Zhang H, Hou Y, Bai J J, Liu W W, Chang S J 2013 Appl. Opt. 52 3305Google Scholar

    [20]

    Chen H Z, Yan G F, Forsberg E, He S L 2016 Appl. Opt. 55 6236Google Scholar

    [21]

    汪静丽, 刘洋, 钟凯 2017 66 024209Google Scholar

    Wang J L, Liu Y, Zhong K 2017 Acta Phys. Sin. 66 024209Google Scholar

    [22]

    Zhu Y F, Liu X, Rao C F, Zhong H, Luo H M, Chen Y H, Ye Z Q, Wang H 2018 Opt. Eng. 57 086112Google Scholar

    [23]

    Wang B K, Tian F J, Liu G Y, Bai R L, Yang X H, Zhang J Z 2021 Opt. Commun. 480 126463Google Scholar

    [24]

    Benabid F, Knight J C, Antonopoulos G, Russell P 2002 Science 298 399Google Scholar

    [25]

    Pearce G J, Wiederhecker G S, Poulton C G, Burger S, Russell P S J 2007 Opt. Express 15 12680Google Scholar

    [26]

    Islam M S, Sultana J, Rana S, Islam M R, Faisal M, Kaijage S F, Abbott D 2017 Opt. Fiber Technol. 34 6Google Scholar

    [27]

    Nielsen K, Rasmussen H K, Adam A J L, Planken P C M, Bang O, Jepsen P U 2009 Opt. Express 17 8592Google Scholar

    [28]

    Khanarian G, Celanese H 2001 Opt. Eng. 40 1024Google Scholar

    [29]

    Hou M X, Zhu F, Wang Y, Wang Y P, Liao C R, Liu S, Lu P X 2016 Opt. Express 24 27890Google Scholar

    [30]

    Ding W, Wang Y Y 2015 Opt. Express 23 21165Google Scholar

    [31]

    Florous N J, Saitoh K, Koshiba M 2006 IEEE Photonics Technol. Lett. 18 1231Google Scholar

    [32]

    Qu Y W, Yuan J H, Zhou X, Li F, Yan B B, Wu Q, Wang K R, Sang X Z, Long K P, Yu C X 2020 J. Opt. Soc. Am. B 37 396410Google Scholar

    [33]

    Zhang Y N, Xue L, Qiao D, Guang Z 2019 Optik 207 163817Google Scholar

    [34]

    Wu Z Q, Zhou X Y, Xia H D, Shi Z H, Huang J, Jiang X D, Wu W D 2017 Appl. Opt. 56 2288Google Scholar

    [35]

    Cucinotta A, Selleri S, Vincetti L, Zoboli M 2002 J. Light Technol. 20 1433Google Scholar

    [36]

    Falkenstein P, Merritt C D, Justus B L 2004 Opt. Lett. 29 1858Google Scholar

    [37]

    Xian F, Mairaj A K, Hewak D, Monro T M 2005 J. Light Technol. 23 2046Google Scholar

    [38]

    Wang L L, Zhang Y N, Ren L Y, Wang X Z, Li T H, Hu B W, Li Y L, Zhao W, Chen X H 2005 Chin. Opt. Lett. 3 S94

    [39]

    Sultana J, Islam M S, Cordeiro C M B, Habib M S, Dinovitser A, Ng B, Abbott D 2020 IEEE Access 8 113309Google Scholar

    [40]

    Cruz A L S, Serrão V A, Barbosa C L, Franco M A R, Cordeiro C M B, Argyros A, Tang X L 2015 J. Microwaves, Optoelectron. Electromagn. Appl. 14 SI45

    [41]

    Van P L D, Gorecki J, Fokoua E N, Apostolopoulos V, Poletti F 2018 Appl. Opt. 57 3953Google Scholar

    [42]

    Kumar V, Varshney R K, Kumar S 2021 Results in Opt. 4 100094Google Scholar

    [43]

    Kumar V, Varshney R K, Kumar S 2020 Appl. Opt. 59 1974Google Scholar

    [44]

    Zhu Y F, Chen M Y, Wang H, Yao H B, Zhang Y K, Yang J C 2013 IEEE Photonics J. 5 7101410Google Scholar

    [45]

    Vera E R, Restrepo J Ú, Durango C J, Cardona J M, Cardona N G 2018 IEEE Photonics J. 10 1Google Scholar

    [46]

    Tian F J, Liu G Y, Luo J F, Yao C Y, Li L, Yang X H, Zhang J Z 2021 Optik 225 165862Google Scholar

  • [1] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美. 基于多孔金膜的太赫兹导模共振生化传感特性仿真.  , 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [2] 惠战强. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器.  , 2021, (): . doi: 10.7498/aps.70.20211650
    [3] 张尧, 孙帅, 闫忠宝, 张果, 史伟, 盛泉, 房强, 张钧翔, 史朝督, 张贵忠, 姚建铨. 太赫兹双芯反谐振光纤的设计及其耦合特性.  , 2020, 69(20): 208703. doi: 10.7498/aps.69.20200662
    [4] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散.  , 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [5] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器.  , 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [6] 张镜水, 孔令琴, 董立泉, 刘明, 左剑, 张存林, 赵跃进. 太赫兹互补金属氧化物半导体场效应管探测器理论模型中扩散效应研究.  , 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [7] 汪静丽, 刘洋, 钟凯. 基于领结型多孔光纤的双芯太赫兹偏振分束器.  , 2017, 66(2): 024209. doi: 10.7498/aps.66.024209
    [8] 陈泽章. 太赫兹波段液晶分子极化率的理论研究.  , 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [9] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器.  , 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [10] 付兴虎, 谢海洋, 杨传庆, 张顺杨, 付广伟, 毕卫红. 基于包层模谐振的三包层石英特种光纤温度传感特性研究.  , 2016, 65(2): 024211. doi: 10.7498/aps.65.024211
    [11] 张会云, 刘蒙, 张玉萍, 何志红, 申端龙, 吴志心, 尹贻恒, 李德华. 基于振动弛豫理论提高光抽运太赫兹激光器输出功率的研究.  , 2014, 63(1): 010702. doi: 10.7498/aps.63.010702
    [12] 李珊珊, 常胜江, 张昊, 白晋军, 刘伟伟. 基于悬浮式双芯多孔光纤的太赫兹偏振分离器.  , 2014, 63(11): 110706. doi: 10.7498/aps.63.110706
    [13] 韩博琳, 娄淑琴, 鹿文亮, 苏伟, 邹辉, 王鑫. 新型超宽带双芯光子晶体光纤偏振分束器的研究.  , 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [14] 姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江. 太赫兹双空芯光纤定向耦合器.  , 2013, 62(2): 028702. doi: 10.7498/aps.62.028702
    [15] 白晋军, 王昌辉, 侯宇, 范飞, 常胜江. 太赫兹双芯光子带隙光纤定向耦合器.  , 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [16] 白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江. 低损宽频高双折射太赫兹光子带隙光纤.  , 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [17] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化.  , 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [18] 李鹏, 赵建林, 张晓娟, 侯建平. 三角结构三芯光子晶体光纤中的模式耦合特性分析.  , 2010, 59(12): 8625-8631. doi: 10.7498/aps.59.8625
    [19] 王燕花, 任文华, 刘 艳, 谭中伟, 简水生. 相位修正的耦合模理论用于计算光纤Bragg光栅法布里-珀罗腔透射谱.  , 2008, 57(10): 6393-6399. doi: 10.7498/aps.57.6393
    [20] 王目光, 魏 淮, 简水生. 复合型双周期光纤光栅的理论与实验研究.  , 2003, 52(3): 609-614. doi: 10.7498/aps.52.609
计量
  • 文章访问数:  5085
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 修回日期:  2021-10-08
  • 上网日期:  2022-02-10
  • 刊出日期:  2022-02-20

/

返回文章
返回
Baidu
map