Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Inverstigation on loading of the Dimple optical trap based on a magnetically levitated large-volume crossed optical dipole trap

Wang Xiao-Feng Li Yu-Qing Feng Guo-Sheng Wu Ji-Zhou Ma Jie Xiao Lian-Tuan Jia Suo-Tang

Citation:

Inverstigation on loading of the Dimple optical trap based on a magnetically levitated large-volume crossed optical dipole trap

Wang Xiao-Feng, Li Yu-Qing, Feng Guo-Sheng, Wu Ji-Zhou, Ma Jie, Xiao Lian-Tuan, Jia Suo-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Optical trapping techniques and the ability to tune the atomic interactions both have made the unprecedented progress in the quantum gas research field. The major advantage of the optical trap is that the atoms are likely to be trapped at various sub-levels of the electronic ground state and the interaction strength can be controlled by Feshbach resonance. Optical trapping methods in combination with magnetic tuning of the scattering properties directly lead to the experimental achievements of Bose-Einstein condensation (BEC) of Cesium, which at first failed by using magnetic trapping approaches due to the large inelastic collision rate. The rapid loss of cesium atoms due to the inelastic two-body collisions greatly suppresses the efficient evaporative cooling to obtain a condensate. For optical production of cesium atomic BEC, it is necessary to prepare a large number of Cs atoms at specified state in an optical trap for condensation, especially for an efficient forced evaporation cooling. In this paper, we demonstrate our research on enhancing the loading rate of the atoms by using a dimple trap combined with a large-volume optical dipole trap (reservoir trap). In our work, the cold cesium atoms are prepared by a three-dimensional degenerated Raman sideband cooling, and then loaded into a large-volume crossed dipole trap by using the magnetic levitation technique. Effective load of the dimple optical trap is realized by superposing the small-volume dimple trap on the center of the largevolume optical trap. The theoretical analyses are performed for the magnetically levitated large-volume crossed dipole trap in variable magnetic field gradients and uniform bias fields. Optimal experimental values are acquired accordingly. The combined potential curve of the dimple trap, which is superimposed on the magnetically levitated large-volume dipole trap, is also given. The loading of precooled atoms from Raman sideband cooling into the magnetically levitated large-volume optical trap is measured in variable magnetic field gradients and uniform bias fields. Different loading results of the dimple trap are investigated, including direct loading after Raman sideband cooling, the large-volume optical trap and the magnetically levitated large-volume dipole trap without anti-trapping potential. Comparatively, the atomic number density is enhanced by a factor of ~15 by loading the atomic sample from the magnetically levitated large-volume dipole trap into the dimple optical trap. The experimental results lay a sound basis for the further cooling and densifying the atomic cloud through the evaporating cooling stage. This method can be used to obtain more cold atoms or a large number of Bose-Einstein condensation atoms for atomic species with large atom mass.
      Corresponding author: Wu Ji-Zhou, wujz@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91436108), the National Natural Science Foundation of China (Grant Nos. 61378014, 61308023, 61378015, 11434007), the New Teacher Fund of the Ministry of Education of China (Grant No. 20131401120012), and the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2013021005-1).
    [1]

    Zahzam N, Vogt T, Mudrich M, Comparat D, Pillet P 2006 Phys. Rev. Lett. 96 023202

    [2]

    Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G M 2014 Nature 510 518

    [3]

    Anderlini M, Lee P J, Brown B L, Sebby-Strabley J, Phillips W D, Porto J V 2007 Nature 448 452

    [4]

    Simon J, Bakr W S, Ma R, Tai M E, Preiss P M, Greiner M 2011 Nature 472 307

    [5]

    Grimm R, Weidemller M, Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys. 42 95

    [6]

    Saba M, Pasquini T A, Sanner C, Shin Y, Ketterle W, Pritchard D E 2005 Science 307 1945

    [7]

    Gatan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nature Phys. 5 115

    [8]

    Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nature Phys. 5 110

    [9]

    Sebby-Strabley J, Newell R T R, Day J O, Brekke E, Walker T G 2005 Phys. Rev. A 71 021401

    [10]

    Goban A, Choi K S, Alton D J, Ding D, Lacrote C, Pototschnig M, Thiele T, Stern N P, Kimble H J 2012 Phys. Rev. Lett. 109 033603

    [11]

    Hackermller L, Schneider U, Moreno-Cardoner M, Kitagawa T, Best T, Will S, Demler E, Altman E, Bloch I, Paredes B 2010 Science 327 1621

    [12]

    Younge K C, Knuffman B, Anderson S E, Raithel G 2010 Phys. Rev. Lett. 104 173001

    [13]

    Barrett M D, Sauer J A, Chapman M S 2001 Phys. Rev. Lett. 87 010404

    [14]

    Truscott A G, Strecker K E, McAlexander W I, Partridge G B, Hulet R G 2001 Science 291 2570

    [15]

    Schreck F, Khaykovich L, Corwin K L, Ferrari G, Bourdel T, Cubizolles J, Salomon C 2001 Phys. Rev. Lett. 87 080403

    [16]

    Granade S R, Gehm M E, O'Hara K M, Thomas J E 2002 Phys. Rev. Lett. 88 120405

    [17]

    Marchant A L, Hndel S, Hopkins S A, Wiles T P, Cornish S L 2012 Phys. Rev. A 85 053647

    [18]

    Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P, Ketterle M 1998 Nature 396 345

    [19]

    Khler T, Gral K, Julienne P S 2006 Rev. Mod. Phys. 78 1311

    [20]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225

    [21]

    Weber T, Herbig J, Mark M, Ngerl H C, Grimm R 2003 Science 299 232

    [22]

    Kraemer T, Herbig J, Mark M, Weber T, Chin C, Ngerl H C, Grimm R 2004 Appl. Phys. B 79 1013

    [23]

    Pinkse P W H, Mosk A, Weidemller M, Reynolds M W, Hijmans T W, Walraven J K M 1997 Phys. Rev. Lett. 78 990

    [24]

    Stamper-Kurn D M, Miesner H J, Chikkatur A P, Inouye S, Stenger J, Ketterle W 1998 Phys. Rev. Lett. 81 2194

    [25]

    Donley E A, Claussen N R, Cornish S L, Roberts J L, Cornell E A, Wieman C E 2001 Nature 412 295

    [26]

    Khl M, Davis M J, Gardiner C W, Hnsch T W, Esslinger T 2002 Phys. Rev. Lett. 88 080402

    [27]

    Erhard M, Schmaljohann H, Kronjger J, Bongs K, Sengstock K 2004 Phys. Rev. A 70 031602

    [28]

    Comparat D, Fioretti A, Stern G, Dimova E, Tolra B L, Pillet P 2006 Phys. Rev. A 73 043410

    [29]

    Ritter S, ttl A, Donner T, Bourdel T, Khl M, Esslinger T 2007 Phys. Rev. Lett. 98 090402

    [30]

    Jacob D, Mimoun E, Sarlo L D, Weitz M, Dalibard J, Gerbier F 2011 New J. Phys. 13 065022

    [31]

    Treutlein P, Chung K Y, Chu S 2001 Phys. Rev. A 63 051401

    [32]

    Li Y, Wu J, Feng G, Nute J, Piano S, Hackermller L, Ma J, Xiao L, Jia S 2015 Laser Phys. Lett. 12 055501

    [33]

    Hung C L, Zhang X B, Gemelke N, Chin C 2008 Phys. Rev. A 78 011604

    [34]

    Li Y Q, Feng G S, Xu R D, Wang X F, Wu J Z, Chen G, Dai X C, Ma J, Xiao L T, Jia S T 2015 Phys. Rev. A 91 053604

    [35]

    Zhang Y C, Wu J Z, Li Y Q, Ma J, Wang L R, Zhao Y T, Xiao L T, Jia S T 2011 Chin. Phys. B 20 123701

    [36]

    Li Y Q, Ma J, Wu J Z, Zhang Y C, Zhao Y T, Wang L R, Xiao L T, Jia S T 2012 Chin. Phys. B 21 043404

    [37]

    Wang Y H, Yang H J, Zhang T C, Wang J M 2006 Acta Phys. Sin. 55 3403 (in Chinese) [王彦华, 杨海菁, 张天才, 王军民 2006 55 3403]

    [38]

    Ma J, Wang X F, Xin T Y, Liu W L, Li Y Q, Wu J Z, Xiao L T, Jia S T 2015 Acta Phys. Sin. 64 153303 (in Chinese) [马杰, 王晓峰, 辛统钰, 刘文良, 李玉清, 武寄洲, 肖连团, 贾锁堂 2015 64 153303]

  • [1]

    Zahzam N, Vogt T, Mudrich M, Comparat D, Pillet P 2006 Phys. Rev. Lett. 96 023202

    [2]

    Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G M 2014 Nature 510 518

    [3]

    Anderlini M, Lee P J, Brown B L, Sebby-Strabley J, Phillips W D, Porto J V 2007 Nature 448 452

    [4]

    Simon J, Bakr W S, Ma R, Tai M E, Preiss P M, Greiner M 2011 Nature 472 307

    [5]

    Grimm R, Weidemller M, Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys. 42 95

    [6]

    Saba M, Pasquini T A, Sanner C, Shin Y, Ketterle W, Pritchard D E 2005 Science 307 1945

    [7]

    Gatan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nature Phys. 5 115

    [8]

    Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nature Phys. 5 110

    [9]

    Sebby-Strabley J, Newell R T R, Day J O, Brekke E, Walker T G 2005 Phys. Rev. A 71 021401

    [10]

    Goban A, Choi K S, Alton D J, Ding D, Lacrote C, Pototschnig M, Thiele T, Stern N P, Kimble H J 2012 Phys. Rev. Lett. 109 033603

    [11]

    Hackermller L, Schneider U, Moreno-Cardoner M, Kitagawa T, Best T, Will S, Demler E, Altman E, Bloch I, Paredes B 2010 Science 327 1621

    [12]

    Younge K C, Knuffman B, Anderson S E, Raithel G 2010 Phys. Rev. Lett. 104 173001

    [13]

    Barrett M D, Sauer J A, Chapman M S 2001 Phys. Rev. Lett. 87 010404

    [14]

    Truscott A G, Strecker K E, McAlexander W I, Partridge G B, Hulet R G 2001 Science 291 2570

    [15]

    Schreck F, Khaykovich L, Corwin K L, Ferrari G, Bourdel T, Cubizolles J, Salomon C 2001 Phys. Rev. Lett. 87 080403

    [16]

    Granade S R, Gehm M E, O'Hara K M, Thomas J E 2002 Phys. Rev. Lett. 88 120405

    [17]

    Marchant A L, Hndel S, Hopkins S A, Wiles T P, Cornish S L 2012 Phys. Rev. A 85 053647

    [18]

    Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P, Ketterle M 1998 Nature 396 345

    [19]

    Khler T, Gral K, Julienne P S 2006 Rev. Mod. Phys. 78 1311

    [20]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225

    [21]

    Weber T, Herbig J, Mark M, Ngerl H C, Grimm R 2003 Science 299 232

    [22]

    Kraemer T, Herbig J, Mark M, Weber T, Chin C, Ngerl H C, Grimm R 2004 Appl. Phys. B 79 1013

    [23]

    Pinkse P W H, Mosk A, Weidemller M, Reynolds M W, Hijmans T W, Walraven J K M 1997 Phys. Rev. Lett. 78 990

    [24]

    Stamper-Kurn D M, Miesner H J, Chikkatur A P, Inouye S, Stenger J, Ketterle W 1998 Phys. Rev. Lett. 81 2194

    [25]

    Donley E A, Claussen N R, Cornish S L, Roberts J L, Cornell E A, Wieman C E 2001 Nature 412 295

    [26]

    Khl M, Davis M J, Gardiner C W, Hnsch T W, Esslinger T 2002 Phys. Rev. Lett. 88 080402

    [27]

    Erhard M, Schmaljohann H, Kronjger J, Bongs K, Sengstock K 2004 Phys. Rev. A 70 031602

    [28]

    Comparat D, Fioretti A, Stern G, Dimova E, Tolra B L, Pillet P 2006 Phys. Rev. A 73 043410

    [29]

    Ritter S, ttl A, Donner T, Bourdel T, Khl M, Esslinger T 2007 Phys. Rev. Lett. 98 090402

    [30]

    Jacob D, Mimoun E, Sarlo L D, Weitz M, Dalibard J, Gerbier F 2011 New J. Phys. 13 065022

    [31]

    Treutlein P, Chung K Y, Chu S 2001 Phys. Rev. A 63 051401

    [32]

    Li Y, Wu J, Feng G, Nute J, Piano S, Hackermller L, Ma J, Xiao L, Jia S 2015 Laser Phys. Lett. 12 055501

    [33]

    Hung C L, Zhang X B, Gemelke N, Chin C 2008 Phys. Rev. A 78 011604

    [34]

    Li Y Q, Feng G S, Xu R D, Wang X F, Wu J Z, Chen G, Dai X C, Ma J, Xiao L T, Jia S T 2015 Phys. Rev. A 91 053604

    [35]

    Zhang Y C, Wu J Z, Li Y Q, Ma J, Wang L R, Zhao Y T, Xiao L T, Jia S T 2011 Chin. Phys. B 20 123701

    [36]

    Li Y Q, Ma J, Wu J Z, Zhang Y C, Zhao Y T, Wang L R, Xiao L T, Jia S T 2012 Chin. Phys. B 21 043404

    [37]

    Wang Y H, Yang H J, Zhang T C, Wang J M 2006 Acta Phys. Sin. 55 3403 (in Chinese) [王彦华, 杨海菁, 张天才, 王军民 2006 55 3403]

    [38]

    Ma J, Wang X F, Xin T Y, Liu W L, Li Y Q, Wu J Z, Xiao L T, Jia S T 2015 Acta Phys. Sin. 64 153303 (in Chinese) [马杰, 王晓峰, 辛统钰, 刘文良, 李玉清, 武寄洲, 肖连团, 贾锁堂 2015 64 153303]

  • [1] Liu Yan-Xin, Wang Zhi-Hui, Guan Shi-Jun, Wang Qin-Xia, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai. Experimental realization of one-dimensional single-atom array based on microscale optical dipole traps. Acta Physica Sinica, 2024, 73(10): 103701. doi: 10.7498/aps.73.20240135
    [2] Dong Shi-Quan, He An, Liu Wei, Xue Cun. Tunable flux-jump characteristic of multifilamentary composite Nb3Sn superconducting wires in maglev systems. Acta Physica Sinica, 2023, 72(1): 017401. doi: 10.7498/aps.72.20221252
    [3] Zhang Yuan, Hu Xin-Ning, Cui Chun-Yan, Cui Xu, Niu Fei-Fei, Huang Xing, Wang Lu-Zhong, Wang Qiu-Liang. Analysis on magnetic coupling characteristics and carrying capacity of superconducting rotor magnetic levitation structure. Acta Physica Sinica, 2023, 72(12): 128401. doi: 10.7498/aps.72.20230328
    [4] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Wu Li-Ming, Wang Kai-Nan, Wang He-Lin, Wang Zhao-Ying, Wang Xiao-Long, Lin Qiang. Influence of Raman laser sidebands effect on the measurement accuracy of cold atom gravimeter. Acta Physica Sinica, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [5] Ma Jun, Chen Zhang-Long, Xian Tao, Wei Xue-Gang, Yang Wan-Min, Chen Sen-Lin, Li Jia-Wei. Effect of inner diameter of hollow cylindrical permanent magnet on levitation force of single domain GdBCO bulk superconductor. Acta Physica Sinica, 2018, 67(7): 077401. doi: 10.7498/aps.67.20172418
    [6] Qin Li-Zhen, Zhang Zhen-Yu, Zhang Kun, Ding Jian-Qiao, Duan Zhi-Yong, Su Yu-Feng. Simulation analysis of dynamic response of the energy harvester based on diamagnetic levitation. Acta Physica Sinica, 2018, 67(1): 018501. doi: 10.7498/aps.67.20171551
    [7] Lin Mao-Jie, Chang Jian, Wu Yu-Hao, Xu Shan-Sen, Wei Bing-Bo. Fluid convection and solidification mechanisms of liquid Fe50Cu50 alloy under electromagnetic levitation condition. Acta Physica Sinica, 2017, 66(13): 136401. doi: 10.7498/aps.66.136401
    [8] Wen Tao, He Jian, Zhang Zeng-Xing, Tian Zhu-Mei, Mu Ji-Liang, Han Jian-Qiang, Chou Xiu-Jian, Xue Chen-Yang. Electromagnetic-triboeletric hybridized generator based on magnetic levitation for scavenging biomechanical energy. Acta Physica Sinica, 2017, 66(22): 228401. doi: 10.7498/aps.66.228401
    [9] Liu Bei, Jin Gang, He Jun, Wang Jun-Min. 852-nm triggered single-photon source based on trapping and manipulation of a single cesium atom confined in a microscopic optical dipole trap. Acta Physica Sinica, 2016, 65(23): 233701. doi: 10.7498/aps.65.233701
    [10] Meng Zeng-Ming, Huang Liang-Hui, Peng Peng, Chen Liang-Chao, Fan Hao, Wang Peng-Jun, Zhang Jing. Raman coupling in atomic Bose-Einstein condensed with phase-locked laser system. Acta Physica Sinica, 2015, 64(24): 243202. doi: 10.7498/aps.64.243202
    [11] Cui Chun-Yan, Hu Xin-Ning, Cheng Jun-Sheng, Wang Hui, Wang Qiu-Liang. Analysis of magnetic disturbance torque and drift error in a superconducting suspension system. Acta Physica Sinica, 2015, 64(1): 018403. doi: 10.7498/aps.64.018403
    [12] Diao Wen-Ting, He Jun, Liu Bei, Wang Jie-Ying, Wang Jun-Min. Improving the single atom probability by using the blue-detuned laser-assisted-collisions between the cold atoms trapped in the for-off-resonance trap. Acta Physica Sinica, 2014, 63(2): 023701. doi: 10.7498/aps.63.023701
    [13] Song Qi-Hui, Shi Wan-Yuan. Influence of horizontal static magnetic field on the stability of electromagnetic levitated Cu molten droplet. Acta Physica Sinica, 2014, 63(24): 248504. doi: 10.7498/aps.63.248504
    [14] Ma Jun, Yang Wan-Min, Wang Miao, Chen Sen-Lin, Feng Zhong-Ling. The effect of additional permanent magnet magnetizing methods on magnetic field distribution and the levitation force of single domain GdBCO bulk superconductor. Acta Physica Sinica, 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [15] Yang Jin-Jin, Li Hui-Jun, Wen Wen, Huang Guo-Xiang. Optical bistability via active Raman gain in an n-type atomic medium. Acta Physica Sinica, 2012, 61(22): 224204. doi: 10.7498/aps.61.224204
    [16] Ma Jun, Yang Wan-Min, Li Jia-Wei, Wang Miao, Chen Sen-Lin. The effects of magnetization methods with additional permanent magnet on the magnetic field distribution and levitation force of single domain GdBCO bulk superconductor. Acta Physica Sinica, 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [17] Ma Jun, Yang Wan-Min. Effect of assembled bar magnet configuration on levitation force of single domain GdBCO bulk superconductor. Acta Physica Sinica, 2011, 60(7): 077401. doi: 10.7498/aps.60.077401
    [18] Ma Jun, Yang Wan-Min, Li Guo-Zheng, Cheng Xiao-Fang, Guo Xiao-Dan. Effects of additional permanent magnet on the levitation force of single domain GdBCO bulk superconductor. Acta Physica Sinica, 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [19] Ma Wei-Zeng, Ji Cheng-Chang, Li Jian-Guo, Xu Zhen-Ming. Temperature character of electromagnetic levitation melting. Acta Physica Sinica, 2003, 52(4): 834-839. doi: 10.7498/aps.52.834
    [20] Ma Wei-Zheng, Ji Cheng-Chang, Li Jian-Guo. . Acta Physica Sinica, 2002, 51(10): 2233-2238. doi: 10.7498/aps.51.2233
Metrics
  • Abstract views:  6323
  • PDF Downloads:  190
  • Cited By: 0
Publishing process
  • Received Date:  24 December 2015
  • Accepted Date:  25 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map