Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonsequential double ionization of aligned molecules by few-cycle laser pulses at low intensity

Huang Cheng Zhong Ming-Min Wu Zheng-Mao

Citation:

Nonsequential double ionization of aligned molecules by few-cycle laser pulses at low intensity

Huang Cheng, Zhong Ming-Min, Wu Zheng-Mao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using the three-dimensional classical ensemble model, nonsequential double ionization (NSDI) of aligned molecules by the few-cycle laser pulse at the low intensity is investigated. Here the two electrons involved in NSDI finally are ionized through a transition doubly excited state induced by the recollision. The results show that the electron correlation behavior in NSDI is strongly dependent on the molecular alignment and the carrier-envelope phase (CEP) of the laser pulse. There are more anti-correlated emissions for the perpendicular molecules than those for the parallel molecules regardless of CEP. The dependence of the electron correlation behavior on molecular alignment can be well explained by the potential energy curves of molecules. That is because the suppressed potential barrier for perpendicular molecules is higher and the electron is more difficult to ionize than for parallel molecules. Thus for perpendicular molecules the ionization of the two electrons has longer time delay, which results in more anticorrelated emissions. Additionally, because the potential barrier for the perpendicular molecules is higher than that for the parallel molecules, the ionization yield of NSDI is about an order of magnitude smaller than that for the parallel molecules. With CEP increasing from 0 to , the anti-correlated emission first increases and then decreases. For parallel alignment, the correlated emission is always dominant at all CEPs. However, for perpendicular alignment, the dominant correlation behavior depends on the CEP of the laser pulse. When the CEP is in a range from 0.3 to 0.7, the anti-correlated emission is dominant. At other CEPs, the correlated emission is dominant. The dependence of the electron correlation behavior on the CEP of the laser pulse is well explained by the dependence of the returning energy of the electron on the CEP of the laser pulse. For different CEPs, the single ionization times resulting in NSDI and the corresponding acceleration electric field are different, which leads to at some CEPs the returning energy of the electron being large and at some other CEPs the returning energy of the electron being small. When those CEPs are available where the returning energy of the electron is larger, the doubly excited state induced by the recollision is more energetic. Thus at those CEPs the emissions of the two electrons from the doubly excited state have smaller time delays and more correlated emissions occur. On the contrary, at those CEPs where the returning energy of the electron is small, more anti-correlated emissions are produced.
      Corresponding author: Huang Cheng, huangcheng@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504302, 61178011, 61475127, 11504301) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. SWU114069, XDJK2015C148).
    [1]

    L'Huillier A, Lompre L A, Mainfray G, Manus C 1983 Phys. Rev. A 27 2503

    [2]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [3]

    Weber T, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Drner R 2000 Nature 405 658

    [4]

    Becker W, Liu X, Jo Ho P, Eberly J H 2012 Rev. Mod. Phys. 84 1011

    [5]

    Figueira de Morisson Faria C, Liu X 2011 J. Mod. Opt. 58 1076

    [6]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [7]

    Schafer K J, Young B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599

    [8]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schrter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Hhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003

    [9]

    Eckhardt B, Prauzner-Bechcickib J S, Sachac K, Zakrzewski J 2010 Chem. Phys. 370 168

    [10]

    Camus N, Fischer B, Kremer M, Sharma V, Rudenko A, Bergues B, Kubel M, Johnson N G, Kling M F, Pfeifer T, Ullrich J, Moshammer R 2012 Phys. Rev. Lett. 108 073003

    [11]

    Liao Q, Lu P X 2010 Phys. Rev. A 82 021403

    [12]

    Lein M, Gross E K U, Engel V 2000 Phys. Rev. Lett. 85 4707

    [13]

    Tong A H, Zhou Y M, Lu P X 2015 Opt. Express 23 15774

    [14]

    Zhou Y M, Huang C, Lu P X 2011 Phys. Rev. A 84 023405

    [15]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett. 112 073002

    [16]

    Wu M Y, Wang Y L, Liu X J 2013 Phys. Rev. A 87 013431

    [17]

    Guo J, Liu X S, Chu S I 2013 Phys. Rev. A 88 023405

    [18]

    Dong S S, Zhang Z L, Bai L H, Zhang J T 2015 Phys. Rev. A 92 033409

    [19]

    Staudte A, Ruiz C, Schffler M, Schssler S, Zeidler D, Weber T, Meckel M, Villeneuve D M, Corkum P B, Becker A, Drner R 2007 Phys. Rev. Lett. 99 263002

    [20]

    Rudenko A, Jesus V L B, Ergler T, Zrost K, Feuerstein B, Schrter C D, Moshammer R, Ullrich J 2007 Phys.Rev. Lett. 99 263003

    [21]

    Ye D F, Liu X J, Liu J 2008 Phys. Rev. Lett. 101 233003

    [22]

    Zhou Y M, Liao Q, Lu P X 2010 Phys. Rev. A 82 053402

    [23]

    Chen Z J, Liang Y, Lin C D 2010 Phys. Rev. Lett. 104 253201

    [24]

    Liao Q, Zhou Y M, Huang C, Lu P X 2012 New J. Phys. 14 013001

    [25]

    Liu Y Q, Tschuch S, Rudenko A, Drr M, Siegel M, Morgner U, Moshammer R, Ullrich J 2008 Phys. Rev. Lett. 101 053001

    [26]

    Sun X F, Li M, Ye D F, Xin G G, Fu L B, Xie X G, Deng Y K, Wu C Y, Liu J, Gong Q H, Liu Y Q 2014 Phys. Rev. Lett. 113 103001

    [27]

    Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I, DiMauro L F 2006 Phys. Rev. Lett. 96 133001

    [28]

    Wang X, Eberly J H 2009 Phys. Rev. Lett. 103 103007

    [29]

    Fu L B, Xin G G, Ye D F, Liu J 2012 Phys. Rev. Lett. 108 103601

    [30]

    Tong A H, Feng G Q 2014 Acta Phys. Sin. 63 023303 (in Chinese) [童爱红, 冯国强 2014 63 023303]

    [31]

    Yu W W, Guo J, Liu X S 2010 Chin. Phys. B 19 023201

    [32]

    Tong A H, Liu D, Feng G Q 2014 Chin. Phys. B 23 103302

    [33]

    Jia X Y, Fan D H, Li W D, Chen J 2013 Chin. Phys. B 22 013303

    [34]

    Huang C, Guo W L, Zhou Y M, Wu Z M 2016 Phys. Rev. A 93 013416

    [35]

    Ma X M, Zhou Y M, Lu P X 2016 Phys. Rev. A 93 013425

    [36]

    Zhou Y M, Huang C, Tong A H, Liao Q, Lu P X 2011 Opt. Express 19 2301

    [37]

    Zhou Y M, Huang C, Liao Q, Hong W Y, Lu P X 2011 Opt. Lett. 36 2758

    [38]

    Zhang L, Xie X H, Roither S, Zhou Y M, Lu P X, Kartashov D, Schoffler M, Shafir D, Corkum P B, Baltuska A, Staudte A, Kitzler M 2014 Phys. Rev. Lett. 112 193002

    [39]

    Tong A H, Feng G Q, Deng Y J 2012 Acta Phys. Sin. 61 093303 (in Chinese) [童爱红, 冯国强, 邓永菊 2012 61 093303]

    [40]

    Liu X, Rottke H, Eremina E, Sandner W, Goulielmakis E, Keeffe K O, Lezius M, Krausz F, Lindner F, Schatzel M G, Paulus G G, Walther H 2004 Phys. Rev. Lett. 93 263001

    [41]

    Morisson Faria C F, Liu X, Sanpera A, Lewenstein A 2004 Phys. Rev. A 70 043406

    [42]

    Liao Q, Lu P X, Zhang Q B, Hong W Y, Yang Z Y 2008 J. Phys. B 41 125601

    [43]

    Li H Y, Chen J, Jiang H B, Liu J, Fu P M, Gong Q H, Yan Z C, Wang B B 2009 J. Phys. B 42 125601

    [44]

    Tang Q B, Zhang D L, Yu B H, Chen D 2010 Acta Phys. Sin. 59 7775 (in Chinese) [汤清彬, 张东玲, 余本海, 陈东 2010 59 7775]

    [45]

    Zhou Y M, Liao Q, Lan P F, Lu P X 2008 Chin. Phys. Lett. 25 3950

    [46]

    Bergues B, Kubel M, Johnson N G, Fischer B, Camus N, Betsch K J, Herrwerth O, Senftleben A, Sayler A M, Rathje T, Pfeifer T, Ben-Itzhak I, Jones R R, Paulus G G, Krausz F, Moshammer R, Ullrich J, Kling M F 2012 Nature Commun. 3 813

    [47]

    Huang C, Zhou Y M, Zhang Q B, Lu P X 2013 Opt. Express 19 11382

    [48]

    Zeidler D, Staudte A, Bardon A B, Villeneuve D M, Drner R, Corkum P B 2005 Phys. Rev. Lett. 95 203003

    [49]

    Huang C, Zhou Y M, Tong A H, Liao H Q, Y, Lu P X 2011 Opt. Express 19 5627

    [50]

    Liao Q, Lu P X 2009 Opt. Express 17 15550

    [51]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008

    [52]

    Haan S L, Dyke J S V, Smith Z S 2008 Phys. Rev. Lett. 101 113001

    [53]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 109 053004

    [54]

    Zhou Y M, Zhang Q B, Huang C, Lu P X 2012 Phys. Rev. A 86 043427

  • [1]

    L'Huillier A, Lompre L A, Mainfray G, Manus C 1983 Phys. Rev. A 27 2503

    [2]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [3]

    Weber T, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Drner R 2000 Nature 405 658

    [4]

    Becker W, Liu X, Jo Ho P, Eberly J H 2012 Rev. Mod. Phys. 84 1011

    [5]

    Figueira de Morisson Faria C, Liu X 2011 J. Mod. Opt. 58 1076

    [6]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [7]

    Schafer K J, Young B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599

    [8]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schrter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Hhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003

    [9]

    Eckhardt B, Prauzner-Bechcickib J S, Sachac K, Zakrzewski J 2010 Chem. Phys. 370 168

    [10]

    Camus N, Fischer B, Kremer M, Sharma V, Rudenko A, Bergues B, Kubel M, Johnson N G, Kling M F, Pfeifer T, Ullrich J, Moshammer R 2012 Phys. Rev. Lett. 108 073003

    [11]

    Liao Q, Lu P X 2010 Phys. Rev. A 82 021403

    [12]

    Lein M, Gross E K U, Engel V 2000 Phys. Rev. Lett. 85 4707

    [13]

    Tong A H, Zhou Y M, Lu P X 2015 Opt. Express 23 15774

    [14]

    Zhou Y M, Huang C, Lu P X 2011 Phys. Rev. A 84 023405

    [15]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett. 112 073002

    [16]

    Wu M Y, Wang Y L, Liu X J 2013 Phys. Rev. A 87 013431

    [17]

    Guo J, Liu X S, Chu S I 2013 Phys. Rev. A 88 023405

    [18]

    Dong S S, Zhang Z L, Bai L H, Zhang J T 2015 Phys. Rev. A 92 033409

    [19]

    Staudte A, Ruiz C, Schffler M, Schssler S, Zeidler D, Weber T, Meckel M, Villeneuve D M, Corkum P B, Becker A, Drner R 2007 Phys. Rev. Lett. 99 263002

    [20]

    Rudenko A, Jesus V L B, Ergler T, Zrost K, Feuerstein B, Schrter C D, Moshammer R, Ullrich J 2007 Phys.Rev. Lett. 99 263003

    [21]

    Ye D F, Liu X J, Liu J 2008 Phys. Rev. Lett. 101 233003

    [22]

    Zhou Y M, Liao Q, Lu P X 2010 Phys. Rev. A 82 053402

    [23]

    Chen Z J, Liang Y, Lin C D 2010 Phys. Rev. Lett. 104 253201

    [24]

    Liao Q, Zhou Y M, Huang C, Lu P X 2012 New J. Phys. 14 013001

    [25]

    Liu Y Q, Tschuch S, Rudenko A, Drr M, Siegel M, Morgner U, Moshammer R, Ullrich J 2008 Phys. Rev. Lett. 101 053001

    [26]

    Sun X F, Li M, Ye D F, Xin G G, Fu L B, Xie X G, Deng Y K, Wu C Y, Liu J, Gong Q H, Liu Y Q 2014 Phys. Rev. Lett. 113 103001

    [27]

    Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I, DiMauro L F 2006 Phys. Rev. Lett. 96 133001

    [28]

    Wang X, Eberly J H 2009 Phys. Rev. Lett. 103 103007

    [29]

    Fu L B, Xin G G, Ye D F, Liu J 2012 Phys. Rev. Lett. 108 103601

    [30]

    Tong A H, Feng G Q 2014 Acta Phys. Sin. 63 023303 (in Chinese) [童爱红, 冯国强 2014 63 023303]

    [31]

    Yu W W, Guo J, Liu X S 2010 Chin. Phys. B 19 023201

    [32]

    Tong A H, Liu D, Feng G Q 2014 Chin. Phys. B 23 103302

    [33]

    Jia X Y, Fan D H, Li W D, Chen J 2013 Chin. Phys. B 22 013303

    [34]

    Huang C, Guo W L, Zhou Y M, Wu Z M 2016 Phys. Rev. A 93 013416

    [35]

    Ma X M, Zhou Y M, Lu P X 2016 Phys. Rev. A 93 013425

    [36]

    Zhou Y M, Huang C, Tong A H, Liao Q, Lu P X 2011 Opt. Express 19 2301

    [37]

    Zhou Y M, Huang C, Liao Q, Hong W Y, Lu P X 2011 Opt. Lett. 36 2758

    [38]

    Zhang L, Xie X H, Roither S, Zhou Y M, Lu P X, Kartashov D, Schoffler M, Shafir D, Corkum P B, Baltuska A, Staudte A, Kitzler M 2014 Phys. Rev. Lett. 112 193002

    [39]

    Tong A H, Feng G Q, Deng Y J 2012 Acta Phys. Sin. 61 093303 (in Chinese) [童爱红, 冯国强, 邓永菊 2012 61 093303]

    [40]

    Liu X, Rottke H, Eremina E, Sandner W, Goulielmakis E, Keeffe K O, Lezius M, Krausz F, Lindner F, Schatzel M G, Paulus G G, Walther H 2004 Phys. Rev. Lett. 93 263001

    [41]

    Morisson Faria C F, Liu X, Sanpera A, Lewenstein A 2004 Phys. Rev. A 70 043406

    [42]

    Liao Q, Lu P X, Zhang Q B, Hong W Y, Yang Z Y 2008 J. Phys. B 41 125601

    [43]

    Li H Y, Chen J, Jiang H B, Liu J, Fu P M, Gong Q H, Yan Z C, Wang B B 2009 J. Phys. B 42 125601

    [44]

    Tang Q B, Zhang D L, Yu B H, Chen D 2010 Acta Phys. Sin. 59 7775 (in Chinese) [汤清彬, 张东玲, 余本海, 陈东 2010 59 7775]

    [45]

    Zhou Y M, Liao Q, Lan P F, Lu P X 2008 Chin. Phys. Lett. 25 3950

    [46]

    Bergues B, Kubel M, Johnson N G, Fischer B, Camus N, Betsch K J, Herrwerth O, Senftleben A, Sayler A M, Rathje T, Pfeifer T, Ben-Itzhak I, Jones R R, Paulus G G, Krausz F, Moshammer R, Ullrich J, Kling M F 2012 Nature Commun. 3 813

    [47]

    Huang C, Zhou Y M, Zhang Q B, Lu P X 2013 Opt. Express 19 11382

    [48]

    Zeidler D, Staudte A, Bardon A B, Villeneuve D M, Drner R, Corkum P B 2005 Phys. Rev. Lett. 95 203003

    [49]

    Huang C, Zhou Y M, Tong A H, Liao H Q, Y, Lu P X 2011 Opt. Express 19 5627

    [50]

    Liao Q, Lu P X 2009 Opt. Express 17 15550

    [51]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008

    [52]

    Haan S L, Dyke J S V, Smith Z S 2008 Phys. Rev. Lett. 101 113001

    [53]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 109 053004

    [54]

    Zhou Y M, Zhang Q B, Huang C, Lu P X 2012 Phys. Rev. A 86 043427

  • [1] He Tong-Tong, Liu Zi-Chao, Li Ying-Bin, Huang Cheng. Manipulating nonsequential double ionization of atoms by parallel polarized three-color laser fields. Acta Physica Sinica, 2024, 73(16): 163201. doi: 10.7498/aps.73.20240737
    [2] Li Ying-Bin, Zhang Ke, Chen Hong-Mei, Kang Shuai-Jie, Li Zheng-Fa, Cheng Jian-Guo, Wu Yin-Meng, Zhai Chun-Yang, Tang Qing-Bin, Xu Jing-Kun, Yu Ben-Hai. Nonsequential double ionization of atoms driven by spatially inhomogeneous laser fields. Acta Physica Sinica, 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [3] Su Jie, Liu Zi-Chao, Liao Jian-Ying, Li Ying-Bin, Huang Cheng. Intensity-dependent electron correlation in nonsequential double ionization of Ar atoms in counter-rotating two-color elliptically polarized laser fields. Acta Physica Sinica, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [4] Zeng Xue, Su Jie, Huang Xue-Fei, Pang Hui-Ling, Huang Cheng. Frequency-ratio-dependent ultrafast dynamics in nonsequential double ionization by co-rotating two-color circularly polarized laser fields. Acta Physica Sinica, 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [5] Huang Cheng, Zhong Ming-Min, Wu Zheng-Mao. Intensity-dependent recollision dynamics in strong-field nonsequential double ionization. Acta Physica Sinica, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [6] Yu Jia-Yi, Chen Ya-Hong, Cai Yang-Jian. Nonuniform Laguerre-Gaussian correlated beam and its propagation properties. Acta Physica Sinica, 2016, 65(21): 214202. doi: 10.7498/aps.65.214202
    [7] Zhang Fang-Ying, Hu Wei, Chen Xin-Bing, Chen Hong, Tang Xiong-Min. Chaos control and anti-control in Boost converter based on altering correlation. Acta Physica Sinica, 2015, 64(4): 048401. doi: 10.7498/aps.64.048401
    [8] Xin Guo-Guo, Zhao Qing, Liu Jie. Maximum correlation at the transition to the saturation regime of nonsequential double ionization. Acta Physica Sinica, 2012, 61(13): 133201. doi: 10.7498/aps.61.133201
    [9] Yu Ben-Hai, Li Ying-Bin. Laser intensity dependence of nonsequential double ionization of argon atoms by elliptically polarized laser pulses. Acta Physica Sinica, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [10] Yu Ben-Hai, Li Ying-Bin, Tang Qing-Bin. The nonsequential double ionization of argon atoms with elliptically polarized laser pulse. Acta Physica Sinica, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [11] Tong Ai-Hong, Liao Qing, Zhou Yue-Ming, Lu Pei-Xiang. Internuclear-distance dependence of nonsequential double ionization of H2 in different alignments. Acta Physica Sinica, 2011, 60(4): 043301. doi: 10.7498/aps.60.043301
    [12] Zhang Dong-Ling, Tang Qing-Bin, Yu Ben-Hai, Chen Dong. Nonsequential double ionization of argon atom below the recollision threshold. Acta Physica Sinica, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [13] Tang Qing-Bin, Zhang Dong-Ling, Yu Ben-Hai, Chen Dong. Three-dimensional classical micro-canonical simulation of nonsequential double ionization with a few-cycle laser pulse. Acta Physica Sinica, 2010, 59(11): 7775-7781. doi: 10.7498/aps.59.7775
    [14] Ma Song-Shan, Xu Hui, Liu Xiao-Liang, Wang Huan-You. Characteristics of hopping conductivity in one-dimensional binary disordered system with off-diagonal correlations. Acta Physica Sinica, 2007, 56(5): 2852-2857. doi: 10.7498/aps.56.2852
    [15] Ma Song-Shan, Xu Hui, Li Yan-Feng, Zhang Peng-Hua. Characteristic of alternating current hopping conductivity in one-dimensional binary disordered system with off-diagonal correlations. Acta Physica Sinica, 2007, 56(9): 5394-5399. doi: 10.7498/aps.56.5394
    [16] Zhang Peng, Song Yan-Rong, Zhang Zhi-Gang. Thomson scattering with few-cycle laser pulses. Acta Physica Sinica, 2006, 55(12): 6208-6213. doi: 10.7498/aps.55.6208
    [17] Wang Xiao-Feng, Jia Tian-Qing, Xu Zhi-Zhan. Photon absorption of conduction band electronsand impact ionization under irradiation of few-cycle ultrashort laser pulses. Acta Physica Sinica, 2005, 54(7): 3451-3456. doi: 10.7498/aps.54.3451
    [18] DONG RUI-FANG, ZHANG JUN-XIANG, ZHANG TIAN-CAI, ZHANG JING, XIE CHANG-DE, PENG KUN-CHI. INTENSITY NOISE SQUEEZING OF LASER DIODE WITH INPHASE EXTERNAL WEAK FEEDBACK BY HALF WAVE PLATE. Acta Physica Sinica, 2001, 50(3): 462-466. doi: 10.7498/aps.50.462
    [19] HU XIANG-MING, PENG JIN-SHENG. THE OPERATION IN THE STEADY STATE AND SQUEEZING OF QUANTUM NOISE IN TWO-MODE TWO-PHOTON CORRELATED-SPONTANEOUS-EMISSION LASERS. Acta Physica Sinica, 1997, 46(2): 255-266. doi: 10.7498/aps.46.255
    [20] ELECTRON CORRELATION AND MANY一BODY WAVE FUNC-TION OF THE SEMICONDUCTOR INVERSION LAYER. Acta Physica Sinica, 1989, 38(8): 1271-1279. doi: 10.7498/aps.38.1271
Metrics
  • Abstract views:  5790
  • PDF Downloads:  224
  • Cited By: 0
Publishing process
  • Received Date:  07 January 2016
  • Accepted Date:  29 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map