Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The effect of additional permanent magnet magnetizing methods on magnetic field distribution and the levitation force of single domain GdBCO bulk superconductor

Ma Jun Yang Wan-Min Wang Miao Chen Sen-Lin Feng Zhong-Ling

Citation:

The effect of additional permanent magnet magnetizing methods on magnetic field distribution and the levitation force of single domain GdBCO bulk superconductor

Ma Jun, Yang Wan-Min, Wang Miao, Chen Sen-Lin, Feng Zhong-Ling
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It has been investigated that the interaction force between a cubic permanent magnet PM1 and a GdBCO bulk (HTSC) superconducting permanent magnet (SCPM) magnetized by a cubic permanent magnet PM2 under different configurations at 77 K. Two configurations were used for the magnetization of the GdBCO bulk, one is that the North pole of the PM2 is in upward direction, the other is in downward direction, so that the North pole of the SCPM is in two states SCPM↑ and SCPM↓; the vertical distance between the bottom surface of PM1 and the top surface of SCPM is kept as a constant value, but the PM2 can be fixed at any positions (x) along a diameter of the GdBCO bulk during the magnetization process. It is found that: for the PM1↓-SCPM↑ configuration, the maximum levitation force is increasing from 16.7 N to 23.1 N when x increases from –15 mm to 0, and then decreases to 16.6 N when x further increases to 15 mm; but for the PM1↓-SCPM↓ configuration, the maximum levitation force is decreasing from 17.7 N to 7 N when x increases from –15 mm to 0, and then increases to 17.6 N when x further increases to 15 mm. These results are not only much different in the two configurations, but also much different from the maximum levitation force 17.1 N of the sample under zero field cooled condition, which is closely related with the trapped field distribution of the SCPM at different x values. These results indicate that the levitation force of high temperature bulk superconductors can be effectively improved by introducing additional permanent magnet based on scientific and reasonable designing of the system configurations, which is very important during the practical design and applications of superconducting magnetic levitation systems.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51167016, 50872079), the Key Grant Project of Chinese Ministry of Education (Grant No. 311033), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. GK201101001, GK201305014).
    [1]

    John R H, Shaul H, Tomotake M 2005 Supercond. Sci. Technol. 18 S1

    [2]

    Werfel F N, Floegel-Delor U, Rothfeld R 2005 Supercond. Sci. Technol. 18 S19

    [3]

    Koshizuka N 2006 Physica C 1103 445

    [4]

    Miyagawa Y, Kameno H, Takahata R 1999 IEEE. Trans. Appl. Supercond. 9 996

    [5]

    Nuria D V, Alvaro S, Carles N 2008 Appl. Phys. Lett. 92 042505

    [6]

    Wang J S, Wang S Y 2002 Physica C 378–381 809

    [7]

    Ewoud V W, Yamamoto A, Toshiro H 2009 Precision Engineer. 33 217

    [8]

    Yang W M, Zhou L, Feng Y, Zhang P X, Zhang C P 2002 Cryogenics 42 589

    [9]

    Koblischka A V, Mcklich F, Koblischka M R 2002 Cryst. Engineer. 5 411

    [10]

    Chan W C 2003 Physica C: Superconductivity 390 27

    [11]

    Zhu M, Ren Z Y, Wang S Y 2002 Chin. J. Low Temperature Phys. 24 213 (in Chinese) [朱敏, 任仲友, 王素玉 2002 低温 24 213]

    [12]

    He G L, He Y W, Zhao Z G, Liu M 2006 Acta Phys. Sin. 55 839 (in Chinese) 55 839 [何国良, 贺延文, 赵志刚, 刘楣 2006 55 839]

    [13]

    Zhou J, Zhang X Y, Zhou Y H 2009 Physica C: Superconductivity 469 207

    [14]

    Cheng T L, Shih C L 2006 J. Magnet. Magnet. Mater. 304 454

    [15]

    Zhang F Y, Huang S L, Cao X W 1989 Acta Phys. Sin. 38 830 (in Chinese) [张凤英, 黄孙利, 曹效文 1989 38 830]

    [16]

    Nuria D V, Alvaro S, Enric P 2007 Appl. Phys. Lett. 90 042503

    [17]

    Wang F, Sun G Q, Kong X M 2001 Acta Phys. Sin. 50 1590 (in Chinese) [王峰, 孙国庆, 孔祥木 2001 50 1590]

    [18]

    Yang W M, Chao X X, Ma J, Li G Z 2010 J. Supercond. Nov. Magn. 23 1007

    [19]

    Wang M, Yang W M, Ma J, Tang Y N 2012 Sci. Sin. Phys. Mech. Astron. 42 346 (in Chinese) [王妙, 杨万民, 马俊, 唐艳妮 2012 中国科学: 物理学, 力学, 天文学 42 346]

    [20]

    Wang M, Yang W M, Zhang X J, Tang Y N 2012 Acta Phys. Sin. 61 196102 (in Chinese) [王妙, 杨万民, 张晓菊, 唐艳妮 2012 61 196102]

    [21]

    Ma J, Yang W M, Li G Z 2011 Acta Phys. Sin. 60 027401 (in Chinese) [马俊, 杨万民, 李国政 2011 60 027401]

    [22]

    Ma J, Yang W M 2011 Acta Phys. Sin. 60 077401 (in Chinese) [马俊, 杨万民 2011 60 077401]

    [23]

    Ma J, Yang W M, Li J W 2012 Acta Phys. Sin. 61 137401 (in Chinese) [马俊, 杨万民, 李佳伟 2012 61 137401]

    [24]

    Yang W M, Zhou L, Feng Y, Zhang P X 2003 Physica C: Superconductivity 398 141

    [25]

    Zhang X Y, Zhou J, Zhou Y H 2009 Supercond. Sci. Technol. 22 1

    [26]

    Deng Z, Zheng J, Song H 2007 IEEE Trans. Appl. Supercond. 17 2071

    [27]

    He Q Y, Wang J S, Wang S Y 2009 Physica C 469 91

    [28]

    Tsuda M, Kawasaki T, Yagai T 2008 J. Phys. 97 1

    [29]

    Cheng X F, Yang W M, Li G Z 2010 Chin. J. Low Temperature Phys. 32 150 (in Chinese) [程晓芳, 杨万民, 李国政 2010 低温 32 150]

    [30]

    Yang W M, Chao X X, Shu Z B 2006 Physica C 445–448 347

  • [1]

    John R H, Shaul H, Tomotake M 2005 Supercond. Sci. Technol. 18 S1

    [2]

    Werfel F N, Floegel-Delor U, Rothfeld R 2005 Supercond. Sci. Technol. 18 S19

    [3]

    Koshizuka N 2006 Physica C 1103 445

    [4]

    Miyagawa Y, Kameno H, Takahata R 1999 IEEE. Trans. Appl. Supercond. 9 996

    [5]

    Nuria D V, Alvaro S, Carles N 2008 Appl. Phys. Lett. 92 042505

    [6]

    Wang J S, Wang S Y 2002 Physica C 378–381 809

    [7]

    Ewoud V W, Yamamoto A, Toshiro H 2009 Precision Engineer. 33 217

    [8]

    Yang W M, Zhou L, Feng Y, Zhang P X, Zhang C P 2002 Cryogenics 42 589

    [9]

    Koblischka A V, Mcklich F, Koblischka M R 2002 Cryst. Engineer. 5 411

    [10]

    Chan W C 2003 Physica C: Superconductivity 390 27

    [11]

    Zhu M, Ren Z Y, Wang S Y 2002 Chin. J. Low Temperature Phys. 24 213 (in Chinese) [朱敏, 任仲友, 王素玉 2002 低温 24 213]

    [12]

    He G L, He Y W, Zhao Z G, Liu M 2006 Acta Phys. Sin. 55 839 (in Chinese) 55 839 [何国良, 贺延文, 赵志刚, 刘楣 2006 55 839]

    [13]

    Zhou J, Zhang X Y, Zhou Y H 2009 Physica C: Superconductivity 469 207

    [14]

    Cheng T L, Shih C L 2006 J. Magnet. Magnet. Mater. 304 454

    [15]

    Zhang F Y, Huang S L, Cao X W 1989 Acta Phys. Sin. 38 830 (in Chinese) [张凤英, 黄孙利, 曹效文 1989 38 830]

    [16]

    Nuria D V, Alvaro S, Enric P 2007 Appl. Phys. Lett. 90 042503

    [17]

    Wang F, Sun G Q, Kong X M 2001 Acta Phys. Sin. 50 1590 (in Chinese) [王峰, 孙国庆, 孔祥木 2001 50 1590]

    [18]

    Yang W M, Chao X X, Ma J, Li G Z 2010 J. Supercond. Nov. Magn. 23 1007

    [19]

    Wang M, Yang W M, Ma J, Tang Y N 2012 Sci. Sin. Phys. Mech. Astron. 42 346 (in Chinese) [王妙, 杨万民, 马俊, 唐艳妮 2012 中国科学: 物理学, 力学, 天文学 42 346]

    [20]

    Wang M, Yang W M, Zhang X J, Tang Y N 2012 Acta Phys. Sin. 61 196102 (in Chinese) [王妙, 杨万民, 张晓菊, 唐艳妮 2012 61 196102]

    [21]

    Ma J, Yang W M, Li G Z 2011 Acta Phys. Sin. 60 027401 (in Chinese) [马俊, 杨万民, 李国政 2011 60 027401]

    [22]

    Ma J, Yang W M 2011 Acta Phys. Sin. 60 077401 (in Chinese) [马俊, 杨万民 2011 60 077401]

    [23]

    Ma J, Yang W M, Li J W 2012 Acta Phys. Sin. 61 137401 (in Chinese) [马俊, 杨万民, 李佳伟 2012 61 137401]

    [24]

    Yang W M, Zhou L, Feng Y, Zhang P X 2003 Physica C: Superconductivity 398 141

    [25]

    Zhang X Y, Zhou J, Zhou Y H 2009 Supercond. Sci. Technol. 22 1

    [26]

    Deng Z, Zheng J, Song H 2007 IEEE Trans. Appl. Supercond. 17 2071

    [27]

    He Q Y, Wang J S, Wang S Y 2009 Physica C 469 91

    [28]

    Tsuda M, Kawasaki T, Yagai T 2008 J. Phys. 97 1

    [29]

    Cheng X F, Yang W M, Li G Z 2010 Chin. J. Low Temperature Phys. 32 150 (in Chinese) [程晓芳, 杨万民, 李国政 2010 低温 32 150]

    [30]

    Yang W M, Chao X X, Shu Z B 2006 Physica C 445–448 347

  • [1] Deng Chen-Hua, Yu Zhong-Hai, Wang Yu-Tao, Kong Sen, Zhou Chao, Yang Sen. Crystallization kinetics of Ti-doped Nd2Fe14B/α-Fe nanocomposite permanent magnets. Acta Physica Sinica, 2023, 72(2): 027501. doi: 10.7498/aps.72.20221479
    [2] Su Xu-Kun, Leng Yong-Gang, Zhang Yu-Yang, Fan Sheng-Bo. Study on the model of space magnetic induction of a bi-pole magnet. Acta Physica Sinica, 2021, 70(16): 167501. doi: 10.7498/aps.70.20210448
    [3] Cui Yong, Wu Ming, Song Xiao, Huang Yu-Ping, Jia Qi, Tao Yun-Fei, Wang Chen. Research progress of small low-frequency transmitting antenna. Acta Physica Sinica, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [4] Li Zi-Liang, Shi Zhen-Lian, Wang Peng-Jun. Design and research of two-dimensional magneto-optical trap of sodium atom using permanent magnets. Acta Physica Sinica, 2020, 69(12): 126701. doi: 10.7498/aps.69.20200266
    [5] Shi Wei, Zhou Qiang, Liu Bin. Performance analysis of spinning magnet as mechanical antenna. Acta Physica Sinica, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
    [6] Li Zhu-Bai, Li Yun, Qin Yuan, Zhang Xue-Feng, Shen Bao-Gen. Magnetization reversal and coercivity in rare-earth permanent magnets and composite magnets. Acta Physica Sinica, 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [7] Ma Jun, Chen Zhang-Long, Xian Tao, Wei Xue-Gang, Yang Wan-Min, Chen Sen-Lin, Li Jia-Wei. Effect of inner diameter of hollow cylindrical permanent magnet on levitation force of single domain GdBCO bulk superconductor. Acta Physica Sinica, 2018, 67(7): 077401. doi: 10.7498/aps.67.20172418
    [8] Wang Miao, Yang Wan-Min, Yang Peng-Tao, Wang Xiao-Mei, Zhang Ming, Hu Cheng-Xi. Influences of BaO doping on the properties of singe domain GdBCO bulk superconductors. Acta Physica Sinica, 2016, 65(22): 227401. doi: 10.7498/aps.65.227401
    [9] Deng Dong-Ge, Wu Xin-Jun, Zuo Su. Measurement of initial magnetization curve based on constant magnetic field excited by permanent magnet. Acta Physica Sinica, 2016, 65(14): 148101. doi: 10.7498/aps.65.148101
    [10] Liu Zhong-Shen, Tegus O, Ou Zhi-Qiang, Fan Wen-Di, Song Zhi-Qiang, Ha Si Chao Lu, Wei Wei, Han Rui. Thermomagnetic power generation of Mn1.2Fe0.8P1-xSix compounds in strong field of permanent magnet. Acta Physica Sinica, 2015, 64(4): 047103. doi: 10.7498/aps.64.047103
    [11] Song Qi-Hui, Shi Wan-Yuan. Influence of horizontal static magnetic field on the stability of electromagnetic levitated Cu molten droplet. Acta Physica Sinica, 2014, 63(24): 248504. doi: 10.7498/aps.63.248504
    [12] He Yong-Zhou. Inhomogeneity of external magnetic field for permanent magnet. Acta Physica Sinica, 2013, 62(8): 084105. doi: 10.7498/aps.62.084105
    [13] Wang Miao, Yang Wan-Min, Zhang Xiao-Ju, Tang Yan-Ni, Wang Gao-Feng. The effects of different particle size Y2Ba4CuBiOy nanoparticles doped on the properties of single domain YBCO bulk superconductors by TSIG process. Acta Physica Sinica, 2012, 61(19): 196102. doi: 10.7498/aps.61.196102
    [14] Ma Jun, Yang Wan-Min, Li Jia-Wei, Wang Miao, Chen Sen-Lin. The effects of magnetization methods with additional permanent magnet on the magnetic field distribution and levitation force of single domain GdBCO bulk superconductor. Acta Physica Sinica, 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [15] Ma Jun, Yang Wan-Min. Effect of assembled bar magnet configuration on levitation force of single domain GdBCO bulk superconductor. Acta Physica Sinica, 2011, 60(7): 077401. doi: 10.7498/aps.60.077401
    [16] Ma Jun, Yang Wan-Min, Li Guo-Zheng, Cheng Xiao-Fang, Guo Xiao-Dan. Effects of additional permanent magnet on the levitation force of single domain GdBCO bulk superconductor. Acta Physica Sinica, 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [17] Liu Gui-Xiong, Xu Chen, Zhang Pei-Qiang, Wu Ting-Wan. Magnetomechanical modeling of magnet immersed in magnetic fluid and controllability of self-suspension. Acta Physica Sinica, 2009, 58(3): 2005-2010. doi: 10.7498/aps.58.2005
    [18] Zhang Ran, Liu Ying, Li Jun, Ma Yi-Long, Gao Sheng-Ji, Tu Ming-Jing. Study on the role of Nb addition in rapid-quenched NdFeB permanent magnets. Acta Physica Sinica, 2007, 56(1): 518-521. doi: 10.7498/aps.56.518
    [19] Ma Wei-Zheng, Ji Cheng-Chang, Li Jian-Guo. . Acta Physica Sinica, 2002, 51(10): 2233-2238. doi: 10.7498/aps.51.2233
    [20] NEW MATERIALS LABORATORY. ON THE HYSTERESIS LOOPS OF LIQUID-PHASE-SINTERED SmCo5, PERMANENT MAGNET AT VARIOUS TEMPERATURES. Acta Physica Sinica, 1976, 25(6): 536-540. doi: 10.7498/aps.25.536
Metrics
  • Abstract views:  5871
  • PDF Downloads:  353
  • Cited By: 0
Publishing process
  • Received Date:  07 April 2013
  • Accepted Date:  15 August 2013
  • Published Online:  05 November 2013

/

返回文章
返回
Baidu
map