-
电光调制技术是产生拉曼光的几种方法之一, 其优点是系统简单、易搭建且环境适应性强. 然而, 这种调制技术会产生额外的边带光, 并影响冷原子干涉绝对重力仪的测量精度. 本文利用自行研制的可移动冷原子重力仪, 研究了边带效应对冷原子重力仪测量精度的影响. 详细分析了拉曼反射镜的位置、拉曼脉冲的作用时刻及其间隔、拉曼光的失谐等一系列参数与边带效应之间的关系, 实验发现这些参数对冷原子重力仪的精度评估有比较大的影响; 此外, 我们还发现在有边带效应的情况下, 原本不影响重力测量精度的实验参数也会影响最终的重力测量结果. 最后, 通过研究拉曼边带效应与拉曼光失谐之间的关系, 本文提出一种评估拉曼边带效应影响重力仪精度的方法. 本文结果为减小拉曼边带效应对冷原子重力仪测量精度的影响提供了依据.The technology of electro-optic modulation is one of the several methods of generating the Raman beams. The experimental system based on this method is simple and much easier to implement, and the environmental adaptability is strong as well. However, this kind of modulation technology will produce additional laser lines, which may affect the measurement accuracy of cold atom gravimeter. Based on a homemade transportable cold atom gravimeter, the influence of Raman sideband effect on the accuracy of cold atom gravimeter is investigated in this paper. We analyze in detail the relationship between Raman sideband effect and some experimental parameters, such as the height of Raman retro-reflection mirror, the time of free fall of the atoms, the detuning of Raman laser, etc. It is found that those parameters have a dominant influence on the measured gravity resulting from Raman sideband effect. Besides, it is also found that the gravity measurements will be sensitive again to some experimental parameters in the case of Raman sideband effect while these parameters are usually insensitive in case of laser system without sideband effect. Finally, we investigate the relationship between Raman sideband effect and Raman detuning, and presente a method of evaluating the gravity induced by Raman sideband effect. The experimental results in this paper can provide a reference for reducing the influence of Raman sideband effect on the accuracy evaluation of cold atomic gravimeter.
[1] Bouchendira R, Clade P, Guellati-Khelifa S, Nez F, Biraben F 2011 Phys. Rev. Lett. 106 080801Google Scholar
[2] Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar
[3] Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G 2014 Nature 510 518Google Scholar
[4] Duan X C, Deng X B, Zhou M K, Zhang K, Xu W J, Xiong F, Xu Y Y, Shao C G, Luo J, Hu Z K 2016 Phys. Rev. Lett. 117 023001Google Scholar
[5] Zhou L, Long S T, Tang B, Chen X, Gao F, Peng W C, Duan W T, Zhong J Q, Xiong Z Y, Wang J, Zhang Y Z, Zhan M S 2015 Phys. Rev. Lett. 115 013004Google Scholar
[6] Graham P W, Hogan J M, Kasevich M A, Rajendran S 2013 Phys. Rev. Lett. 110 171102Google Scholar
[7] Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar
[8] Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar
[9] McGuirk J M, Foster G T, Fixler J B, Snadden M J, Kasevich M A 2002 Phys. Rev. A 65 033608Google Scholar
[10] Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y H, Prevedelli M, Rosi G, Salvi L, Tino G M 2014 Phys. Rev. A 89 023607Google Scholar
[11] Dutta I, Savoie D, Fang B, Venon B, Alzar C L G, Geiger R, Landragin A 2016 Phys. Rev. Lett. 116 183003Google Scholar
[12] Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046Google Scholar
[13] Lautier J, Volodimer L, Hardin T, Merlet S, Lours M, Dos Santos F P, Landragin A 2014 Appl. Phys. Lett. 105 144102Google Scholar
[14] Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar
[15] Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar
[16] Mahadeswaraswamy C 2009 Ph. D. Dissertation (California: Stanford University)
[17] Geiger R, Ménoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun. 2 474Google Scholar
[18] Barrett B, Antoni-Micollier L, Chichet L, Battelier B, Lévèque T, Landragin A, Bouyer P 2016 Nat. Commun. 7 13786
[19] Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar
[20] Becker D, Lachmann M D, Seidel S T, Ahlers H, Dinkelaker A N, Grosse J, Hellmig O, Muentinga H, Schkolnik V, Wendrich T, Wenzlawski A, Weps B, Corgier R, Franz T, Gaaloul N, Herr W, Luedtke D, Popp M, Amri S, Duncker H, Erbe M, Kohfeldt A, Kubelka-Lange A, Braxmaier C, Charron E, Ertmer W, Krutzik M, Laemmerzahl C, Peters A, Schleich W P, Sengstock K, Walser R, Wicht A, Windpassinger P, Rasel E M 2018 Nature 562 391Google Scholar
[21] Elliott E R, Krutzik M C, Williams J R, Thompson R J, Aveline D C 2018 NPJ Microgravity 4 7Google Scholar
[22] Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 12300Google Scholar
[23] Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar
[24] Carraz O, Lienhart F, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2009 Appl. Phys. B 97 405Google Scholar
[25] Diboune C, Zahzam N, Bidel Y, Cadoret M, Bresson A 2017 Opt. Express 25 16898Google Scholar
[26] Menoret V, Geiger R, Stern G, Zahzam N, Battelier B, Bresson A, Landragin A, Bouyer P 2011 Opt. Lett. 36 4128Google Scholar
[27] Carraz O, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2012 Phys. Rev. A 86 033605Google Scholar
[28] Zhu L X, Lien Y H, Hinton A, Niggebaum A, Rammeloo C, Bongs K, Holynski M 2018 Opt. Express 26 6542Google Scholar
[29] Fu Z J, Wang Q Y, Wang Z Y, Wu B, Cheng B, Lin Q 2019 Chin. Opt. Lett. 17 011204Google Scholar
[30] Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar
[31] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 67 190302Google Scholar
Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 190302Google Scholar
[32] Louchet Chauvet A, Farah T, Bodart Q, Clairon A, Landragin A, Merlet S, Dos Santos F P 2011 New J. Phys. 13 065025Google Scholar
-
图 3 不同拉曼光反射镜位置重力测量值随
$T$ 的变化. 实心三角形: zM = 41.50 cm的实验数据; 实心正方形: zM = 40.58 cm的实验数据Fig. 3. Measurements of the gravity changes as a function of
$T$ at two different positions of Raman retro-reflection mirror. Red and green scatters are the experimental data of the position of 41.50 cm and 40.58 cm respectively.图 9 不同拉曼光反射镜位置重力测量值随拉曼光失谐的变化. 红点和黑点分别是41.50 和40.58 cm两个竖直位置下的实验数据, 红色和黑色直线分别是其线性拟合曲线
Fig. 9. Measurements of the gravity as a function of the detunings of Raman laser at the different positions of Raman retro-reflection mirror. red and black scatters are the experimental data for two different heights 41.50 cm and 40.58 cm respectively; Red and black lines are the corresponding fitted curves.
-
[1] Bouchendira R, Clade P, Guellati-Khelifa S, Nez F, Biraben F 2011 Phys. Rev. Lett. 106 080801Google Scholar
[2] Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar
[3] Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G 2014 Nature 510 518Google Scholar
[4] Duan X C, Deng X B, Zhou M K, Zhang K, Xu W J, Xiong F, Xu Y Y, Shao C G, Luo J, Hu Z K 2016 Phys. Rev. Lett. 117 023001Google Scholar
[5] Zhou L, Long S T, Tang B, Chen X, Gao F, Peng W C, Duan W T, Zhong J Q, Xiong Z Y, Wang J, Zhang Y Z, Zhan M S 2015 Phys. Rev. Lett. 115 013004Google Scholar
[6] Graham P W, Hogan J M, Kasevich M A, Rajendran S 2013 Phys. Rev. Lett. 110 171102Google Scholar
[7] Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar
[8] Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar
[9] McGuirk J M, Foster G T, Fixler J B, Snadden M J, Kasevich M A 2002 Phys. Rev. A 65 033608Google Scholar
[10] Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y H, Prevedelli M, Rosi G, Salvi L, Tino G M 2014 Phys. Rev. A 89 023607Google Scholar
[11] Dutta I, Savoie D, Fang B, Venon B, Alzar C L G, Geiger R, Landragin A 2016 Phys. Rev. Lett. 116 183003Google Scholar
[12] Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046Google Scholar
[13] Lautier J, Volodimer L, Hardin T, Merlet S, Lours M, Dos Santos F P, Landragin A 2014 Appl. Phys. Lett. 105 144102Google Scholar
[14] Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar
[15] Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar
[16] Mahadeswaraswamy C 2009 Ph. D. Dissertation (California: Stanford University)
[17] Geiger R, Ménoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun. 2 474Google Scholar
[18] Barrett B, Antoni-Micollier L, Chichet L, Battelier B, Lévèque T, Landragin A, Bouyer P 2016 Nat. Commun. 7 13786
[19] Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar
[20] Becker D, Lachmann M D, Seidel S T, Ahlers H, Dinkelaker A N, Grosse J, Hellmig O, Muentinga H, Schkolnik V, Wendrich T, Wenzlawski A, Weps B, Corgier R, Franz T, Gaaloul N, Herr W, Luedtke D, Popp M, Amri S, Duncker H, Erbe M, Kohfeldt A, Kubelka-Lange A, Braxmaier C, Charron E, Ertmer W, Krutzik M, Laemmerzahl C, Peters A, Schleich W P, Sengstock K, Walser R, Wicht A, Windpassinger P, Rasel E M 2018 Nature 562 391Google Scholar
[21] Elliott E R, Krutzik M C, Williams J R, Thompson R J, Aveline D C 2018 NPJ Microgravity 4 7Google Scholar
[22] Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 12300Google Scholar
[23] Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar
[24] Carraz O, Lienhart F, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2009 Appl. Phys. B 97 405Google Scholar
[25] Diboune C, Zahzam N, Bidel Y, Cadoret M, Bresson A 2017 Opt. Express 25 16898Google Scholar
[26] Menoret V, Geiger R, Stern G, Zahzam N, Battelier B, Bresson A, Landragin A, Bouyer P 2011 Opt. Lett. 36 4128Google Scholar
[27] Carraz O, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2012 Phys. Rev. A 86 033605Google Scholar
[28] Zhu L X, Lien Y H, Hinton A, Niggebaum A, Rammeloo C, Bongs K, Holynski M 2018 Opt. Express 26 6542Google Scholar
[29] Fu Z J, Wang Q Y, Wang Z Y, Wu B, Cheng B, Lin Q 2019 Chin. Opt. Lett. 17 011204Google Scholar
[30] Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar
[31] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 67 190302Google Scholar
Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 190302Google Scholar
[32] Louchet Chauvet A, Farah T, Bodart Q, Clairon A, Landragin A, Merlet S, Dos Santos F P 2011 New J. Phys. 13 065025Google Scholar
计量
- 文章访问数: 9396
- PDF下载量: 148
- 被引次数: 0