搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拉曼激光边带效应对冷原子重力仪测量精度的影响

吴彬 程冰 付志杰 朱栋 邬黎明 王凯楠 王河林 王兆英 王肖隆 林强

引用本文:
Citation:

拉曼激光边带效应对冷原子重力仪测量精度的影响

吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强

Influence of Raman laser sidebands effect on the measurement accuracy of cold atom gravimeter

Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Wu Li-Ming, Wang Kai-Nan, Wang He-Lin, Wang Zhao-Ying, Wang Xiao-Long, Lin Qiang
PDF
HTML
导出引用
  • 电光调制技术是产生拉曼光的几种方法之一, 其优点是系统简单、易搭建且环境适应性强. 然而, 这种调制技术会产生额外的边带光, 并影响冷原子干涉绝对重力仪的测量精度. 本文利用自行研制的可移动冷原子重力仪, 研究了边带效应对冷原子重力仪测量精度的影响. 详细分析了拉曼反射镜的位置、拉曼脉冲的作用时刻及其间隔、拉曼光的失谐等一系列参数与边带效应之间的关系, 实验发现这些参数对冷原子重力仪的精度评估有比较大的影响; 此外, 我们还发现在有边带效应的情况下, 原本不影响重力测量精度的实验参数也会影响最终的重力测量结果. 最后, 通过研究拉曼边带效应与拉曼光失谐之间的关系, 本文提出一种评估拉曼边带效应影响重力仪精度的方法. 本文结果为减小拉曼边带效应对冷原子重力仪测量精度的影响提供了依据.
    The technology of electro-optic modulation is one of the several methods of generating the Raman beams. The experimental system based on this method is simple and much easier to implement, and the environmental adaptability is strong as well. However, this kind of modulation technology will produce additional laser lines, which may affect the measurement accuracy of cold atom gravimeter. Based on a homemade transportable cold atom gravimeter, the influence of Raman sideband effect on the accuracy of cold atom gravimeter is investigated in this paper. We analyze in detail the relationship between Raman sideband effect and some experimental parameters, such as the height of Raman retro-reflection mirror, the time of free fall of the atoms, the detuning of Raman laser, etc. It is found that those parameters have a dominant influence on the measured gravity resulting from Raman sideband effect. Besides, it is also found that the gravity measurements will be sensitive again to some experimental parameters in the case of Raman sideband effect while these parameters are usually insensitive in case of laser system without sideband effect. Finally, we investigate the relationship between Raman sideband effect and Raman detuning, and presente a method of evaluating the gravity induced by Raman sideband effect. The experimental results in this paper can provide a reference for reducing the influence of Raman sideband effect on the accuracy evaluation of cold atomic gravimeter.
      通信作者: 程冰, bingcheng@zjut.edu.cn ; 林强, qlin@zjut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFF0200206, 2017YFC0601602)和国家自然科学基金(批准号: 11604296, 61727821, 61478069, 61875175, 11404286)资助的课题
      Corresponding author: Cheng Bing, bingcheng@zjut.edu.cn ; Lin Qiang, qlin@zjut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFF0200206, 2017YFC0601602) and the National Natural Science Foundation of China (Grant Nos. 11604296, 61727821, 61478069, 61875175, 11404286)
    [1]

    Bouchendira R, Clade P, Guellati-Khelifa S, Nez F, Biraben F 2011 Phys. Rev. Lett. 106 080801Google Scholar

    [2]

    Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar

    [3]

    Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G 2014 Nature 510 518Google Scholar

    [4]

    Duan X C, Deng X B, Zhou M K, Zhang K, Xu W J, Xiong F, Xu Y Y, Shao C G, Luo J, Hu Z K 2016 Phys. Rev. Lett. 117 023001Google Scholar

    [5]

    Zhou L, Long S T, Tang B, Chen X, Gao F, Peng W C, Duan W T, Zhong J Q, Xiong Z Y, Wang J, Zhang Y Z, Zhan M S 2015 Phys. Rev. Lett. 115 013004Google Scholar

    [6]

    Graham P W, Hogan J M, Kasevich M A, Rajendran S 2013 Phys. Rev. Lett. 110 171102Google Scholar

    [7]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [8]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar

    [9]

    McGuirk J M, Foster G T, Fixler J B, Snadden M J, Kasevich M A 2002 Phys. Rev. A 65 033608Google Scholar

    [10]

    Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y H, Prevedelli M, Rosi G, Salvi L, Tino G M 2014 Phys. Rev. A 89 023607Google Scholar

    [11]

    Dutta I, Savoie D, Fang B, Venon B, Alzar C L G, Geiger R, Landragin A 2016 Phys. Rev. Lett. 116 183003Google Scholar

    [12]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046Google Scholar

    [13]

    Lautier J, Volodimer L, Hardin T, Merlet S, Lours M, Dos Santos F P, Landragin A 2014 Appl. Phys. Lett. 105 144102Google Scholar

    [14]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar

    [15]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [16]

    Mahadeswaraswamy C 2009 Ph. D. Dissertation (California: Stanford University)

    [17]

    Geiger R, Ménoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun. 2 474Google Scholar

    [18]

    Barrett B, Antoni-Micollier L, Chichet L, Battelier B, Lévèque T, Landragin A, Bouyer P 2016 Nat. Commun. 7 13786

    [19]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [20]

    Becker D, Lachmann M D, Seidel S T, Ahlers H, Dinkelaker A N, Grosse J, Hellmig O, Muentinga H, Schkolnik V, Wendrich T, Wenzlawski A, Weps B, Corgier R, Franz T, Gaaloul N, Herr W, Luedtke D, Popp M, Amri S, Duncker H, Erbe M, Kohfeldt A, Kubelka-Lange A, Braxmaier C, Charron E, Ertmer W, Krutzik M, Laemmerzahl C, Peters A, Schleich W P, Sengstock K, Walser R, Wicht A, Windpassinger P, Rasel E M 2018 Nature 562 391Google Scholar

    [21]

    Elliott E R, Krutzik M C, Williams J R, Thompson R J, Aveline D C 2018 NPJ Microgravity 4 7Google Scholar

    [22]

    Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 12300Google Scholar

    [23]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar

    [24]

    Carraz O, Lienhart F, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2009 Appl. Phys. B 97 405Google Scholar

    [25]

    Diboune C, Zahzam N, Bidel Y, Cadoret M, Bresson A 2017 Opt. Express 25 16898Google Scholar

    [26]

    Menoret V, Geiger R, Stern G, Zahzam N, Battelier B, Bresson A, Landragin A, Bouyer P 2011 Opt. Lett. 36 4128Google Scholar

    [27]

    Carraz O, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2012 Phys. Rev. A 86 033605Google Scholar

    [28]

    Zhu L X, Lien Y H, Hinton A, Niggebaum A, Rammeloo C, Bongs K, Holynski M 2018 Opt. Express 26 6542Google Scholar

    [29]

    Fu Z J, Wang Q Y, Wang Z Y, Wu B, Cheng B, Lin Q 2019 Chin. Opt. Lett. 17 011204Google Scholar

    [30]

    Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar

    [31]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 67 190302Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 190302Google Scholar

    [32]

    Louchet Chauvet A, Farah T, Bodart Q, Clairon A, Landragin A, Merlet S, Dos Santos F P 2011 New J. Phys. 13 065025Google Scholar

  • 图 1  拉曼光边带效应示意图

    Fig. 1.  The schematic diagram of Raman sideband effect.

    图 2  有无拉曼边带效应对冷原子重力仪测量结果的影响

    Fig. 2.  The influence of laser systems with and without sidebands on the measured results of cold atom gravimeter

    图 3  不同拉曼光反射镜位置重力测量值随$T$的变化. 实心三角形: zM = 41.50 cm的实验数据; 实心正方形: zM = 40.58 cm的实验数据

    Fig. 3.  Measurements of the gravity changes as a function of $T$ at two different positions of Raman retro-reflection mirror. Red and green scatters are the experimental data of the position of 41.50 cm and 40.58 cm respectively.

    图 4  相同拉曼光反射镜位置下多次测量重力值随$T$的变化关系. 不同颜色代表不同天的测量数据

    Fig. 4.  Measurements of the functions of gravity changes as different $T$ when the positions of Raman retro-reflection mirror are the same. Different colors denote the experimental data measured at different days.

    图 5  重力测量值随${t_0}$的变化关系

    Fig. 5.  The measured gravity changes as a function of ${t_0}$.

    图 6  重力测量值随拉曼光失谐$\varDelta $的变化. 红圆点: 实验数据; 红线: 线性拟合曲线

    Fig. 6.  The gravity variations with the changes of the detuning of Raman laser. Red dots: the experimental data; Red line: the linear fitted curve.

    图 7  重力测量值随拉曼共振峰位置的变化 (a) 有边带效应; (b) 无边带效应; 圆散点: 实验数据; 黑线: 线性拟合曲线

    Fig. 7.  The gravity variations as a function of the positions of Raman resonant peak. (a) With sidebands effect; (b) without sidebands effect. Round scatters: the experimental data; Black line: the linear fitted curve.

    图 8  不同拉曼脉冲配置对重力测量的影响 (a)有边带效应情况; (b)无边带效应情况

    Fig. 8.  The influence of different configurations of Raman pulses sequence on the measurement of gravity. (a) The case with sidebands effect; (b) the case without sidebands effect.

    图 9  不同拉曼光反射镜位置重力测量值随拉曼光失谐的变化. 红点和黑点分别是41.50 和40.58 cm两个竖直位置下的实验数据, 红色和黑色直线分别是其线性拟合曲线

    Fig. 9.  Measurements of the gravity as a function of the detunings of Raman laser at the different positions of Raman retro-reflection mirror. red and black scatters are the experimental data for two different heights 41.50 cm and 40.58 cm respectively; Red and black lines are the corresponding fitted curves.

    图 10  不同t0下重力测量值随拉曼光大失谐Δ的变化. 黑圆点: t0 = 8 ms; 红三角: t0 = 11 ms; 蓝方块: t0 = 17 ms

    Fig. 10.  The measured gravity as a function of the detunings of Raman laser with different t0. The black dots: t0 = 8 ms; The red triangle: t0 = 11 ms; the blue square: t0 = 17 ms.

    Baidu
  • [1]

    Bouchendira R, Clade P, Guellati-Khelifa S, Nez F, Biraben F 2011 Phys. Rev. Lett. 106 080801Google Scholar

    [2]

    Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar

    [3]

    Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G 2014 Nature 510 518Google Scholar

    [4]

    Duan X C, Deng X B, Zhou M K, Zhang K, Xu W J, Xiong F, Xu Y Y, Shao C G, Luo J, Hu Z K 2016 Phys. Rev. Lett. 117 023001Google Scholar

    [5]

    Zhou L, Long S T, Tang B, Chen X, Gao F, Peng W C, Duan W T, Zhong J Q, Xiong Z Y, Wang J, Zhang Y Z, Zhan M S 2015 Phys. Rev. Lett. 115 013004Google Scholar

    [6]

    Graham P W, Hogan J M, Kasevich M A, Rajendran S 2013 Phys. Rev. Lett. 110 171102Google Scholar

    [7]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [8]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar

    [9]

    McGuirk J M, Foster G T, Fixler J B, Snadden M J, Kasevich M A 2002 Phys. Rev. A 65 033608Google Scholar

    [10]

    Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y H, Prevedelli M, Rosi G, Salvi L, Tino G M 2014 Phys. Rev. A 89 023607Google Scholar

    [11]

    Dutta I, Savoie D, Fang B, Venon B, Alzar C L G, Geiger R, Landragin A 2016 Phys. Rev. Lett. 116 183003Google Scholar

    [12]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046Google Scholar

    [13]

    Lautier J, Volodimer L, Hardin T, Merlet S, Lours M, Dos Santos F P, Landragin A 2014 Appl. Phys. Lett. 105 144102Google Scholar

    [14]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar

    [15]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [16]

    Mahadeswaraswamy C 2009 Ph. D. Dissertation (California: Stanford University)

    [17]

    Geiger R, Ménoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun. 2 474Google Scholar

    [18]

    Barrett B, Antoni-Micollier L, Chichet L, Battelier B, Lévèque T, Landragin A, Bouyer P 2016 Nat. Commun. 7 13786

    [19]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [20]

    Becker D, Lachmann M D, Seidel S T, Ahlers H, Dinkelaker A N, Grosse J, Hellmig O, Muentinga H, Schkolnik V, Wendrich T, Wenzlawski A, Weps B, Corgier R, Franz T, Gaaloul N, Herr W, Luedtke D, Popp M, Amri S, Duncker H, Erbe M, Kohfeldt A, Kubelka-Lange A, Braxmaier C, Charron E, Ertmer W, Krutzik M, Laemmerzahl C, Peters A, Schleich W P, Sengstock K, Walser R, Wicht A, Windpassinger P, Rasel E M 2018 Nature 562 391Google Scholar

    [21]

    Elliott E R, Krutzik M C, Williams J R, Thompson R J, Aveline D C 2018 NPJ Microgravity 4 7Google Scholar

    [22]

    Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 12300Google Scholar

    [23]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar

    [24]

    Carraz O, Lienhart F, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2009 Appl. Phys. B 97 405Google Scholar

    [25]

    Diboune C, Zahzam N, Bidel Y, Cadoret M, Bresson A 2017 Opt. Express 25 16898Google Scholar

    [26]

    Menoret V, Geiger R, Stern G, Zahzam N, Battelier B, Bresson A, Landragin A, Bouyer P 2011 Opt. Lett. 36 4128Google Scholar

    [27]

    Carraz O, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2012 Phys. Rev. A 86 033605Google Scholar

    [28]

    Zhu L X, Lien Y H, Hinton A, Niggebaum A, Rammeloo C, Bongs K, Holynski M 2018 Opt. Express 26 6542Google Scholar

    [29]

    Fu Z J, Wang Q Y, Wang Z Y, Wu B, Cheng B, Lin Q 2019 Chin. Opt. Lett. 17 011204Google Scholar

    [30]

    Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar

    [31]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 67 190302Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 190302Google Scholar

    [32]

    Louchet Chauvet A, Farah T, Bodart Q, Clairon A, Landragin A, Merlet S, Dos Santos F P 2011 New J. Phys. 13 065025Google Scholar

  • [1] 文艺, 伍康, 王力军. 绝对重力测量中振动传感器振动补偿性能的分析.  , 2022, 71(4): 049101. doi: 10.7498/aps.71.20211686
    [2] 朱栋, 徐晗, 周寅, 吴彬, 程冰, 王凯楠, 陈佩军, 高世腾, 翁堪兴, 王河林, 彭树萍, 乔中坤, 王肖隆, 林强. 基于扩展卡尔曼滤波算法的船载绝对重力测量数据处理.  , 2022, 71(13): 133702. doi: 10.7498/aps.71.20220071
    [3] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验.  , 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [4] 文艺, 伍康, 王力军. 绝对重力测量中振动传感器振动补偿性能的分析.  , 2021, (): . doi: 10.7498/aps.70.20211686
    [5] 李沫, 陈飞良, 罗小嘉, 杨丽君, 张健. 原子芯片的基本原理、关键技术及研究进展.  , 2021, 70(2): 023701. doi: 10.7498/aps.70.20201561
    [6] 王凯楠, 程冰, 周寅, 陈佩军, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于1560 nm外腔式激光器的拉曼光锁相技术.  , 2021, 70(17): 170303. doi: 10.7498/aps.70.20210432
    [7] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验研究.  , 2021, (): . doi: 10.7498/aps.70.20211449
    [8] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量.  , 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [9] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量.  , 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [10] 刘纪彩, 成飞, 赵亚男, 郭芬芬. 飞秒激光场中原子所受光学偶极力研究.  , 2019, 68(3): 033701. doi: 10.7498/aps.68.20182016
    [11] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量.  , 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [12] 王志辉, 田亚莉, 李刚, 张天才. 用于铯原子内态操控的双光子拉曼激光的产生及应用.  , 2015, 64(18): 184209. doi: 10.7498/aps.64.184209
    [13] 陆俊发, 周琦, 潘小青, 印建平. 可操控二种冷原子或冷分子样品的光学双阱新方案及其实验研究.  , 2013, 62(23): 233701. doi: 10.7498/aps.62.233701
    [14] 陆俊发, 周琦, 纪宪明, 印建平. 实现冷原子、冷分子光学囚禁的组合三光学势阱方案.  , 2011, 60(6): 063701. doi: 10.7498/aps.60.063701
    [15] 卢向东, 李同保, 马艳, 汪黎栋. 激光汇聚Cr原子沉积的原子光学特性研究.  , 2009, 58(12): 8205-8211. doi: 10.7498/aps.58.8205
    [16] 陆俊发, 纪宪明, 印建平. 实现冷原子或冷分子囚禁的可控制光学四阱.  , 2006, 55(4): 1740-1750. doi: 10.7498/aps.55.1740
    [17] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间.  , 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [18] 段正路, 张卫平, 李师群, 周兆英, 冯焱颖, 朱 荣. 物质波在原子波导中传输时的波导衔接激发.  , 2005, 54(12): 5622-5628. doi: 10.7498/aps.54.5622
    [19] 郑森林, 陈 君, 林 强. 光脉冲序列对三能级原子重力仪测量精度的影响.  , 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
    [20] 纪宪明, 印建平. 冷原子或冷分子囚禁的可控制光学双阱.  , 2004, 53(12): 4163-4172. doi: 10.7498/aps.53.4163
计量
  • 文章访问数:  9396
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-21
  • 修回日期:  2019-07-05
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回
Baidu
map