Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental realization of one-dimensional single-atom array based on microscale optical dipole traps

Liu Yan-Xin Wang Zhi-Hui Guan Shi-Jun Wang Qin-Xia Zhang Peng-Fei Li Gang Zhang Tian-Cai

Citation:

Experimental realization of one-dimensional single-atom array based on microscale optical dipole traps

Liu Yan-Xin, Wang Zhi-Hui, Guan Shi-Jun, Wang Qin-Xia, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai
PDF
HTML
Get Citation
  • Neutral atom array serves as a crucial experimental platform for studying many-body physics, quantum computing, and quantum simulation. In this work, we describe in detail the experimental process of preparing a one-dimensional homogeneous single atom array containing 40 Cs atoms, including the dipole trap array generation device, atomic array fluorescence imaging, and the uniformity optimization of the dipole trap array. The beam waist of the dipole trap is about 1.8 μm, and the spatial resolution of the imaging system is higher than 1.55 μm. The non-uniformity of dipole trap array is mainly caused by the intermodulation effect of multi-tone signal during amplification. The uniformity of the dipole trap array is optimized to 2% (Fig. (a)) by measuring the fluctuations of the dipole trap intensity and the light shift of trapped atom, and providing feedback to adjust the phase and amplitude applied to the multi-tone RF signal on acousto-optic deflectors. Furthermore, the uniformity of oscillation frequency, loading rate, and lifetime for trapped atom in the dipole trap array are measured. These results show that oscillation frequency has a uniformity within 2% (Fig. (b)); mean loading rate is around 58% with a uniformity within 3%; and mean lifetime of single atom in dark trap is around 6(1) s with a uniformity within 8%.
      Corresponding author: Li Gang, gangli@sxu.edu.cn ; Zhang Tian-Cai, tczhang@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U21A6006, U21A20433, 11974223, 11974225, 12104277, 12104278) and the Fund for “133 Project” Key Subjects Construction of Shanxi Province, China.
    [1]

    Weiss D S, Saffman M 2017 Phys. Today 70 44Google Scholar

    [2]

    Bruzewicz C D, McConnell R, Chiaverini J, Sage J M 2016 Nat. Commun. 7 13005Google Scholar

    [3]

    Gong M, Chen M C, Zheng Y R, Wang S Y, Zha C, Deng H, Yan Z G, Rong H, Wu Y L, Li S W, Chen F S, Zhao Y W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Castellano A D, Wang H H, Peng C Z, Lu C Y, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 122 110501Google Scholar

    [4]

    Singh K, Anand S, Pocklington A, Kemp J T, Bernien H 2022 Phy. Rev. X 12 011040

    [5]

    Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Vuletić V, Lukin M D 2017 Nature 551 579Google Scholar

    [6]

    Labuhn H, Barredo D, Ravets S, Léséleuc S D, Macrì T, Lahaye T, Browaeys A 2016 Nature 534 667Google Scholar

    [7]

    Ebadi S, Wang T T, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho W W, Choi S, Sachdev S, Greiner M, Vladan Vuletić V, Lukin M D 2021 Nature 595 227Google Scholar

    [8]

    Scholl P, Schuler M, Williams H J, Eberharter A A, Barredo D, Schymik K N, Lienhard V, Henry L P, Lang T C, Lahaye T, Läuchli A M, Browaeys A 2021 Nature 595 233Google Scholar

    [9]

    Norcia M A, Cairncross W B, Barnes K, et al. 2023 Phys. Rew. X 13 041034

    [10]

    Singh K, Bradley C E, Anand S, Ramesh V, White R, Bernien H 2023 Science 380 126Google Scholar

    [11]

    Evered S J, Bluvstein D, Kalinowski M, Ebadi S, Manovitz T, Zhou H, Li S H, Geim A A, Wang T T, Maskara N, Levine H, Semeghini G, Greiner M, Vuletic V, Lukin M D 2023 Nature 622 268Google Scholar

    [12]

    Graham T M, Song Y, Scott J, Poole C, Phuttitarn L, Jooya K, Eichler P, Jiang X, Marra A, Grinkemeyer B, Kwon M, Ebert M, Cherek J, Lichtman M T, Gillette M, Gilbert J, Bowman D, Ballance T, Campbell C, Dahl E D, Crawford O, Blunt N S, Rogers B, Noel T, Saffman M 2023 Nature 604 457Google Scholar

    [13]

    Bluvstein D, Evered S J, Geim A A, Li S H, Zhou H, Manovitz T, Ebadi S, Cain M, Kalinowski M, Hangleiter D, Ataides J P B, Maskara N, Cong I, Gao X, Rodriguez P S, Karolyshyn T, Semeghini G, Gullans M J, Greiner M, Vuletic V, Lukin M D 2024 Nature 626 58Google Scholar

    [14]

    Barredo D, De Léséleuc S, Lienhard V, Lahaye T, Browaeys A 2016 Science 354 1021Google Scholar

    [15]

    Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Lukin M D 2016 Science 354 1024Google Scholar

    [16]

    Brown M O, Thiele T, Kiehl C, Hsu T W, Regal C A 2019 Phys. Rev. X 9 011057

    [17]

    Semeghini G, Levine H, Keesling A, Ebadi S, Wang T T, Bluvstein D, Verresen R, Pichler H, Kalinowski M, Lukin M D 2021 Science 374 1242Google Scholar

    [18]

    Sergi J F, Joseph V, Alexandre D 2024 arXiv: 2402.02852 [cond-mat.quant-gas]

    [19]

    Liu Y X, Wang Z H, Yang P F, Wang Q X, Fan Q, Guan S J, Li G, Zhang P F, Zhang T C 2023 Phys. Rev. Lett. 130 173601Google Scholar

    [20]

    Deist E, Gerber J A, Lu Y H, Zeiher J, Stamper-Kurn D M 2022 Phys. Rev. Lett. 128 083201Google Scholar

    [21]

    Ðorđević T, Samutpraphoot P, Ocola P L, Bernien H, Grinkemeyer B, Dimitrova I, Vuletić V, Lukin M D 2021 Science 373 1511Google Scholar

    [22]

    Deist E, Lu Y H, Ho J, Pasha M K, Zeiher J, Yan Z, Stamper-Kurn D M 2022 Phys. Rev. Lett. 129 203602Google Scholar

    [23]

    Yan Z J, Jacquelyn H, Lu Y H, Masson S J, Asenjo-Garcia A, Stamper-Kurn D M 2023 Phys. Rev. Lett. 131 253603Google Scholar

    [24]

    Li S K, Li G, Wu W, Fan Q, TianY L, Yang P F, Zhang P F, Zhang T C 2020 Rev. Sci. Instrum. 91 043104Google Scholar

    [25]

    Schlosser N, Reymond G, Grangier P 2002 Phys. Rev. Lett. 89 023005Google Scholar

    [26]

    Sortais Y R P, Marion H, Tuchendler C, Lance A M, Lamare M, Fournet P, Armellin C, Mercier R, Messin G, Browaeys A, Grangier P 2007 Phys. Rev. A 75 013406Google Scholar

    [27]

    Sheng C, He X, Xu P, Guo R, Wang K, Xiong Z, Liu M, Wang J, Zhan M 2018 Phys. Rev. Lett. 121 240501Google Scholar

  • 图 1  偶极阱阵列以及成像光路示意图, 插图为AOD工作原理示意图

    Figure 1.  Schematic diagram of the dipole trap array and imaging optics, and the inset demonstrates the operational principle of AOD.

    图 2  偶极阱阵列CCD成像图及强度分布

    Figure 2.  CCD imaging and intensity distribution of the dipole trap array.

    图 3  (a), (b)成像系统校准与分辨率测量, 通过成像系统分别对780 nm单模保偏光纤端面成像(a)及测试靶成像(b); (c)图(b)中第8组刻线的第3个条纹放大图; (d)图(a)灰度值强度分布; (e), (f)分别对应于水平刻线和竖直刻线强度分布图

    Figure 3.  Calibration and resolution measurement of the imaging system: (a), (b) Single-mode polarization-maintaining fiber end-face is imaged by the imaging system, and a test target is imaged as well; (c) zooms in on the third stripe of the eighth group of patterns in Fig. (b); (d) the intensity distribution of the grayscale values in Fig. (a); (e), (f) correspond to intensity distribution maps of horizontal and vertical stripes, respectively.

    图 4  实验过程与单原子阵列荧光成像 (a)实验时序图; (b)单原子信号统计直方图(图(c)中从左往右第13个偶极阱), 曝光时间为30 ms, 测量次数为3600, 浅蓝色线为双峰高斯函数拟合曲线; (c)单原子阵列荧光信号叠加图, 叠加次数为500

    Figure 4.  Experimental process and fluorescence imaging of a single-atom array: (a) Experimental timing sequence; (b) histogram of single-atom signals (the 13th dipole trap from left to right in Fig. (c)), with an exposure time of 30 ms and a total measurement times of 3600, the light blue line represents the fitted curve using a bimodal Gaussian function; (c) fluorescence signal superimposed image of single-atom array, with a total of 500 superimpositions.

    图 5  单原子阵列光频移和振荡频率均匀性 (a)不同偶极阱引起原子光频移分布图, 插图实验结果可用于确定偶极阱 13 中原子的光频移; (b)不同偶极阱内原子振荡频率分布图, 插图为偶极阱 13 通过释放再俘获方法测量得到的实验结果, 用于确定原子的振荡频率. 图中的误差棒为拟合误差

    Figure 5.  Uniformity of light shift and oscillation frequency in single-atom array: (a) Distribution of light shift caused by different dipole trap, with inset showing the experimental results that can be used to determine the light frequency shift of atoms in dipole trap 13; (b) distribution of oscillation frequencies within different dipole traps, with inset indicating the experimental results obtained through the release-recapture method for measuring dipole trap 13, which can be used to determine the oscillation frequency of atoms. The error bars in panels (a) and (b) represent fitting errors.

    图 6  单原子阵列装载率和寿命均匀性 (a)不同偶极阱单原子装载概率分布图, 误差棒为多次测量结果的标准差; (b)不同偶极阱内单原子暗阱寿命分布图, 误差棒为拟合误差, 插图为偶极阱13暗阱寿命测量结果

    Figure 6.  Uniformity of loading probability and lifetime in the single-atom array: (a) Distribution of loading probability in different dipole trap, the error bar is the standard deviation of multiple measurement results; (b) distribution of lifetime in different dipole trap, the error bars represent fitting errors, the inset presents the measurement results of the dark trap lifetime in dipole trap 13.

    Baidu
  • [1]

    Weiss D S, Saffman M 2017 Phys. Today 70 44Google Scholar

    [2]

    Bruzewicz C D, McConnell R, Chiaverini J, Sage J M 2016 Nat. Commun. 7 13005Google Scholar

    [3]

    Gong M, Chen M C, Zheng Y R, Wang S Y, Zha C, Deng H, Yan Z G, Rong H, Wu Y L, Li S W, Chen F S, Zhao Y W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Castellano A D, Wang H H, Peng C Z, Lu C Y, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 122 110501Google Scholar

    [4]

    Singh K, Anand S, Pocklington A, Kemp J T, Bernien H 2022 Phy. Rev. X 12 011040

    [5]

    Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Vuletić V, Lukin M D 2017 Nature 551 579Google Scholar

    [6]

    Labuhn H, Barredo D, Ravets S, Léséleuc S D, Macrì T, Lahaye T, Browaeys A 2016 Nature 534 667Google Scholar

    [7]

    Ebadi S, Wang T T, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho W W, Choi S, Sachdev S, Greiner M, Vladan Vuletić V, Lukin M D 2021 Nature 595 227Google Scholar

    [8]

    Scholl P, Schuler M, Williams H J, Eberharter A A, Barredo D, Schymik K N, Lienhard V, Henry L P, Lang T C, Lahaye T, Läuchli A M, Browaeys A 2021 Nature 595 233Google Scholar

    [9]

    Norcia M A, Cairncross W B, Barnes K, et al. 2023 Phys. Rew. X 13 041034

    [10]

    Singh K, Bradley C E, Anand S, Ramesh V, White R, Bernien H 2023 Science 380 126Google Scholar

    [11]

    Evered S J, Bluvstein D, Kalinowski M, Ebadi S, Manovitz T, Zhou H, Li S H, Geim A A, Wang T T, Maskara N, Levine H, Semeghini G, Greiner M, Vuletic V, Lukin M D 2023 Nature 622 268Google Scholar

    [12]

    Graham T M, Song Y, Scott J, Poole C, Phuttitarn L, Jooya K, Eichler P, Jiang X, Marra A, Grinkemeyer B, Kwon M, Ebert M, Cherek J, Lichtman M T, Gillette M, Gilbert J, Bowman D, Ballance T, Campbell C, Dahl E D, Crawford O, Blunt N S, Rogers B, Noel T, Saffman M 2023 Nature 604 457Google Scholar

    [13]

    Bluvstein D, Evered S J, Geim A A, Li S H, Zhou H, Manovitz T, Ebadi S, Cain M, Kalinowski M, Hangleiter D, Ataides J P B, Maskara N, Cong I, Gao X, Rodriguez P S, Karolyshyn T, Semeghini G, Gullans M J, Greiner M, Vuletic V, Lukin M D 2024 Nature 626 58Google Scholar

    [14]

    Barredo D, De Léséleuc S, Lienhard V, Lahaye T, Browaeys A 2016 Science 354 1021Google Scholar

    [15]

    Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Lukin M D 2016 Science 354 1024Google Scholar

    [16]

    Brown M O, Thiele T, Kiehl C, Hsu T W, Regal C A 2019 Phys. Rev. X 9 011057

    [17]

    Semeghini G, Levine H, Keesling A, Ebadi S, Wang T T, Bluvstein D, Verresen R, Pichler H, Kalinowski M, Lukin M D 2021 Science 374 1242Google Scholar

    [18]

    Sergi J F, Joseph V, Alexandre D 2024 arXiv: 2402.02852 [cond-mat.quant-gas]

    [19]

    Liu Y X, Wang Z H, Yang P F, Wang Q X, Fan Q, Guan S J, Li G, Zhang P F, Zhang T C 2023 Phys. Rev. Lett. 130 173601Google Scholar

    [20]

    Deist E, Gerber J A, Lu Y H, Zeiher J, Stamper-Kurn D M 2022 Phys. Rev. Lett. 128 083201Google Scholar

    [21]

    Ðorđević T, Samutpraphoot P, Ocola P L, Bernien H, Grinkemeyer B, Dimitrova I, Vuletić V, Lukin M D 2021 Science 373 1511Google Scholar

    [22]

    Deist E, Lu Y H, Ho J, Pasha M K, Zeiher J, Yan Z, Stamper-Kurn D M 2022 Phys. Rev. Lett. 129 203602Google Scholar

    [23]

    Yan Z J, Jacquelyn H, Lu Y H, Masson S J, Asenjo-Garcia A, Stamper-Kurn D M 2023 Phys. Rev. Lett. 131 253603Google Scholar

    [24]

    Li S K, Li G, Wu W, Fan Q, TianY L, Yang P F, Zhang P F, Zhang T C 2020 Rev. Sci. Instrum. 91 043104Google Scholar

    [25]

    Schlosser N, Reymond G, Grangier P 2002 Phys. Rev. Lett. 89 023005Google Scholar

    [26]

    Sortais Y R P, Marion H, Tuchendler C, Lance A M, Lamare M, Fournet P, Armellin C, Mercier R, Messin G, Browaeys A, Grangier P 2007 Phys. Rev. A 75 013406Google Scholar

    [27]

    Sheng C, He X, Xu P, Guo R, Wang K, Xiong Z, Liu M, Wang J, Zhan M 2018 Phys. Rev. Lett. 121 240501Google Scholar

  • [1] Huang Tian-Long, Wu Yong-Zheng, Ni Ming, Wang Shi, Ye Yong-Jin. Effects of quantum noise on Shor’s algorithm. Acta Physica Sinica, 2024, 73(5): 050301. doi: 10.7498/aps.73.20231414
    [2] Yang Xiao-Kun, Li Wei, Huang Yong-Chang. Quantum game— “PQ” problem. Acta Physica Sinica, 2024, 73(3): 030301. doi: 10.7498/aps.73.20230592
    [3] Wu Yu-Kai, Duan Lu-Ming. Research progress of ion trap quantum computing. Acta Physica Sinica, 2023, 72(23): 230302. doi: 10.7498/aps.72.20231128
    [4] Fan Heng. Breakthrough of error correction in quantum computing. Acta Physica Sinica, 2023, 72(7): 070303. doi: 10.7498/aps.72.20230330
    [5] Jiang Da, Yu Dong-Yang, Zheng Zhan, Cao Xiao-Chao, Lin Qiang, Liu Wu-Ming. Research progress of material, physics, and device of topological superconductors for quantum computing. Acta Physica Sinica, 2022, 71(16): 160302. doi: 10.7498/aps.71.20220596
    [6] Wang Mei-Hong, Hao Shu-Hong, Qin Zhong-Zhong, Su Xiao-Long. Research advances in continuous-variable quantum computation and quantum error correction. Acta Physica Sinica, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [7] Wang Chen-Xu, He Ran, Li Rui-Rui, Chen Yan, Fang Ding, Cui Jin-Ming, Huang Yun-Feng, Li Chuan-Feng, Guo Guang-Can. Advances in the study of ion trap structures in quantum computation and simulation. Acta Physica Sinica, 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [8] Wang Ning, Wang Bao-Chuan, Guo Guo-Ping. New progress of silicon-based semiconductor quantum computation. Acta Physica Sinica, 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [9] Zhou Zong-Quan. “Quantum memory” quantum computers and noiseless phton echoes. Acta Physica Sinica, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [10] Zhang Jie-Yin, Gao Fei, Zhang Jian-Jun. Research progress of silicon and germanium quantum computing materials. Acta Physica Sinica, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [11] Zhang Shi-Hao, Zhang Xiang-Dong, Li Lü-Zhou. Research progress of measurement-based quantum computation. Acta Physica Sinica, 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [12] Fan Hong-Jian, Li Jiang, Wang Li-Hua, Fan Chun-Hai, Liu Hua-Jie. Constructions of iron atoms arrays based on DNA origami templates for cryptography applications. Acta Physica Sinica, 2021, 70(6): 068702. doi: 10.7498/aps.70.20201438
    [13] He Ying-Ping, Hong Jian-Song, Liu Xiong-Jun. Non-abelian statistics of Majorana modes and the applications to topological quantum computation. Acta Physica Sinica, 2020, 69(11): 110302. doi: 10.7498/aps.69.20200812
    [14] Tian Yu-Ling, Feng Tian-Feng, Zhou Xiao-Qi. Collaborative quantum computation with redundant graph state. Acta Physica Sinica, 2019, 68(11): 110302. doi: 10.7498/aps.68.20190142
    [15] Zhao Shi-Ping, Liu Yu-Xi, Zheng Dong-Ning. Novel superconducting qubits and quantum physics. Acta Physica Sinica, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [16] Fan Heng. Quantum computation and quantum simulation. Acta Physica Sinica, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [17] Zhao Na, Liu Jian-She, Li Tie-Fu, Chen Wei. Progress of coupled superconducting qubits. Acta Physica Sinica, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [18] Ye Bin, Xu Wen-Bo, Gu Bin-Jie. Robust quantum computation of the quantum kicked Harper model and dissipative decoherence. Acta Physica Sinica, 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [19] Ye Bin, Gu Rui-Jun, Xu Wen-Bo. Robust quantum computation of the kicked Harper model and quantum chaos. Acta Physica Sinica, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
    [20] Li De-Rong, Lü Xiao-Hua, Wu Ping, Luo Qing-Ming, Chen R. Wei, Zeng Shao-Qun. Compensation of temporal dispersion for acousto-optical deflector scanning femtosecond laser. Acta Physica Sinica, 2006, 55(9): 4729-4733. doi: 10.7498/aps.55.4729
Metrics
  • Abstract views:  1948
  • PDF Downloads:  106
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2024
  • Accepted Date:  25 February 2024
  • Available Online:  30 March 2024
  • Published Online:  20 May 2024

/

返回文章
返回
Baidu
map