-
通过对永磁体辅助下单畴GdBCO超导体和方形永磁体在液氮温度、 零场冷、 轴对称情况下磁悬浮力的测量, 研究了三种不同组态中辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响. 实验结果表明, 如果处在超导体上方的测量用方形永磁体N极向下, 则在轴对称情况下, 当方形辅助永磁体N极向上与超导体下表面贴在一起时, 超导体的最大磁悬浮力从没有引入辅助永磁体磁化的14.3 N增加到31.8 N, 提高到222%; 当方形辅助永磁体放置在超导体上表面、 N极垂直向上且场冷后去掉辅助永磁体时, 超导体的最大磁悬浮力从没有引入辅助永磁体磁化的14.3 N增加到21.6 N, 增加到151%; 当方形辅助永磁体放置在超导体上表面、 N极垂直向下且场冷后去掉方形辅助永磁体时, 超导体的最大磁悬浮力从没有引入辅助永磁体磁化的14.3 N减小到8.6 N, 减小为无辅助永磁体时的60%.这些结果说明, 只有通过科学合理地设计超导体和永磁体的组合方式, 才能获得较高的磁场强度, 有效地提高超导体的磁悬浮力特性, 该结果对促进超导体的应用具有重要的指导意义.The effects of magnetization methods with additional permanent magnet on the magnetic field distribution and the levitation force of single domain GdBCO bulk superconductor are investigated with a cubic permanent magnet in their coaxial configuration in zero field cooled state at liquid nitrogen temperature in three different ways. It is found that when the N pole of the cubic permanent magnet, for the levitation force measurement, is placed above the GdBCO bulk superconductor and in the downward direction, the maximal levitation force can be improved to 31.8 N, and that when the N pole of the additional cubic permanent magnet points to upward and sticks to the bottom of the GdBCO bulk, the maximal levitation force is increased up to about 222% of the levitation force of 14.3 N for the system without additional permanent magnet. The maximal levitation force can be improved to 21.6 N (or reduced to 8.6 N), when the GdBCO bulk superconductor is closely placed below and magnetized by the additional cubic permanent magnet with N pole in the upward (or downward) direction, and the additional permanent magnet is removed away after the magnetization, the maximal levitation force is about 151% (or 60%) of 14.3 N for the system without the additional permanent magnet. The results indicate that the levitation force of high temperature bulk superconductors can be effectively improved by introducing additional permanent magnet based on the scientific and reasonable designing of the system configurations, which is very important for the practical design and application of superconducting magnetic levitation system.
-
Keywords:
- single domain GdBCO /
- permanent magnet /
- trapped field /
- levitation force
[1] John R H, Shaul H, Tomotake M 2005 Supercond. Sci. Technol. 18 S1
[2] Werfel F N, Floegel-Delor U, Rothfeld R 2005 Supercond. Sci. Technol. 18 S19
[3] [4] Koshizuka N 2006 Physica C 1103 445
[5] [6] Miyagawa Y, Kameno H, Takahata R 1999 IEEE Trans. Appl. Supercond. 9 996
[7] [8] Nuria D V, Alvaro S, Carles N 2008 Appl. Phys. Lett. 92 042505
[9] [10] Wang J S, Wang SY 2002 Physica C 378-381 809
[11] [12] Ewoud V W, Yamamoto A, Toshiro H 2009 Precision Engineering 33 217
[13] [14] [15] Yang W M, Zhou L, Feng Y, Zhang P X, Zhang C P 2002 Cryogenics 42 589
[16] Koblischka A V, Mcklich F, Koblischka M R 2002 Crystal Engineering 5 411
[17] [18] [19] Chan W C 2003 Physica C: Superconductivity 390 27
[20] Zhu M, Ren Zh Y, Wang S Y 2002 Chinese Journal of Low Temperature Physics 24 213 [朱敏, 任仲友, 王素玉 2002 低温 24 213]
[21] [22] He G L, He Y W, Zhao ZH G, Liu M 2006 Acta Phys. Sin. 55 839 (in Chinese) 55 839 [何国良, 贺延文, 赵志刚, 刘楣 2006 55 839]
[23] [24] Zhou J, Zhang X Y, Zhou Y H 2009 Physica C: Superconductivity 469 207
[25] [26] Cheng T L, Shih C L 2006 Journal of Magnetism and Magnetic Materials 304 e454
[27] [28] Zhang F Y, Huang S L, Cao X W 1989 Acta Phys. Sin. 39 830 (in Chinese) [张凤英, 黄孙利, 曹效文 1989 39 830]
[29] [30] [31] Nuria DV, Alvaro S, Enric P 2007 Appl. Phys. Lett. 90 042503
[32] Wang F, Sun G Q, Kong X M 2001 Acta Phys. Sin. 50 1590 (in Chinese) [王峰, 孙国庆, 孔祥木 2001 50 1590]
[33] [34] [35] Yang W M, Chao X X, Ma J, Li G Z 2010 J. Supercond. Nov. Magn. 23 1007
[36] Ma J, Yang W M, Li G Zh 2011 Acta Phys. Sin. 60 027401 (in Chinese) [马俊, 杨万民, 李国政 2011 60 027401]
[37] [38] [39] Ma J, Yang W M 2011 Acta Phys. Sin. 60 077401 (in Chinese) [马俊, 杨万民 2011 60 077401]
[40] Yang W M, Zhou L, Feng Y, Zhang P X 2003 Physica C: Superconductivity 398 141
[41] [42] [43] Zhang X Y, Zhou J, Zhou Y H 2009 Supercond. Sci. Technol. 22 1
[44] [45] Deng Z, Zheng J, Song H 2007 IEEE Trans. Appl. Supercond. 17 2071
[46] He Q Y, Wang J S, Wang S Y 2009 Physica C 469 91
[47] [48] [49] Tsuda M, Kawasaki T, Yagai T 2008 J. Phys. 97 1
[50] Cheng X F, Yang W M, Li G Zh 2010 Chinese Journal of Low Temperature Physics 32 150 [程晓芳, 杨万民, 李国政 2010 低温 32 150]
[51] [52] [53] Yang W M, Chao X X, Shu Z B 2006 Physica C 445-448 347
-
[1] John R H, Shaul H, Tomotake M 2005 Supercond. Sci. Technol. 18 S1
[2] Werfel F N, Floegel-Delor U, Rothfeld R 2005 Supercond. Sci. Technol. 18 S19
[3] [4] Koshizuka N 2006 Physica C 1103 445
[5] [6] Miyagawa Y, Kameno H, Takahata R 1999 IEEE Trans. Appl. Supercond. 9 996
[7] [8] Nuria D V, Alvaro S, Carles N 2008 Appl. Phys. Lett. 92 042505
[9] [10] Wang J S, Wang SY 2002 Physica C 378-381 809
[11] [12] Ewoud V W, Yamamoto A, Toshiro H 2009 Precision Engineering 33 217
[13] [14] [15] Yang W M, Zhou L, Feng Y, Zhang P X, Zhang C P 2002 Cryogenics 42 589
[16] Koblischka A V, Mcklich F, Koblischka M R 2002 Crystal Engineering 5 411
[17] [18] [19] Chan W C 2003 Physica C: Superconductivity 390 27
[20] Zhu M, Ren Zh Y, Wang S Y 2002 Chinese Journal of Low Temperature Physics 24 213 [朱敏, 任仲友, 王素玉 2002 低温 24 213]
[21] [22] He G L, He Y W, Zhao ZH G, Liu M 2006 Acta Phys. Sin. 55 839 (in Chinese) 55 839 [何国良, 贺延文, 赵志刚, 刘楣 2006 55 839]
[23] [24] Zhou J, Zhang X Y, Zhou Y H 2009 Physica C: Superconductivity 469 207
[25] [26] Cheng T L, Shih C L 2006 Journal of Magnetism and Magnetic Materials 304 e454
[27] [28] Zhang F Y, Huang S L, Cao X W 1989 Acta Phys. Sin. 39 830 (in Chinese) [张凤英, 黄孙利, 曹效文 1989 39 830]
[29] [30] [31] Nuria DV, Alvaro S, Enric P 2007 Appl. Phys. Lett. 90 042503
[32] Wang F, Sun G Q, Kong X M 2001 Acta Phys. Sin. 50 1590 (in Chinese) [王峰, 孙国庆, 孔祥木 2001 50 1590]
[33] [34] [35] Yang W M, Chao X X, Ma J, Li G Z 2010 J. Supercond. Nov. Magn. 23 1007
[36] Ma J, Yang W M, Li G Zh 2011 Acta Phys. Sin. 60 027401 (in Chinese) [马俊, 杨万民, 李国政 2011 60 027401]
[37] [38] [39] Ma J, Yang W M 2011 Acta Phys. Sin. 60 077401 (in Chinese) [马俊, 杨万民 2011 60 077401]
[40] Yang W M, Zhou L, Feng Y, Zhang P X 2003 Physica C: Superconductivity 398 141
[41] [42] [43] Zhang X Y, Zhou J, Zhou Y H 2009 Supercond. Sci. Technol. 22 1
[44] [45] Deng Z, Zheng J, Song H 2007 IEEE Trans. Appl. Supercond. 17 2071
[46] He Q Y, Wang J S, Wang S Y 2009 Physica C 469 91
[47] [48] [49] Tsuda M, Kawasaki T, Yagai T 2008 J. Phys. 97 1
[50] Cheng X F, Yang W M, Li G Zh 2010 Chinese Journal of Low Temperature Physics 32 150 [程晓芳, 杨万民, 李国政 2010 低温 32 150]
[51] [52] [53] Yang W M, Chao X X, Shu Z B 2006 Physica C 445-448 347
计量
- 文章访问数: 7419
- PDF下载量: 454
- 被引次数: 0