搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微型光学偶极阱中单个铯原子俘获与操控的852 nm触发式单光子源

刘贝 靳刚 何军 王军民

引用本文:
Citation:

基于微型光学偶极阱中单个铯原子俘获与操控的852 nm触发式单光子源

刘贝, 靳刚, 何军, 王军民

852-nm triggered single-photon source based on trapping and manipulation of a single cesium atom confined in a microscopic optical dipole trap

Liu Bei, Jin Gang, He Jun, Wang Jun-Min
PDF
导出引用
  • 基于单原子操控的单光子源具有窄带宽、可与同类原子吸收线匹配、基本不受外界环境因素的影响等特点,在量子光学基本问题研究及量子信息处理等方面具有重要价值.本文研究了强聚焦1064 nm基模高斯光束形成的光学偶极阱中铯原子6S1/2|Fg=4,mF=+4-6P3/2|Fe=5,mF=+5循环跃迁的光频移,并在实验上进行了测量.基于共振脉冲光激发俘获在远失谐微型光学偶极阱中的单个铯原子,实验演示了10 MHz重复频率的触发式852 nm单光子源.采用基于单光子探测器的Hanbry Brown-Twiss实验系统,对单光子源的二阶相干度进行了测量,零延时处符合计数值为0.09,实验显示单光子源呈现显著的光子反群聚特性.
    Single-atom-based single-photon source has several advantages, such as narrow bandwidth, wavelength matching with the absorption line of the same atomic ensemble, and insensitivity to the environment disturbing, and it is very important not only for basic researches in quantum optic field but also for applications in quantum information processing. In this paper, we report the generation of a 10-MHz-repetition-rate triggered single-photon source at 852 nm based on a trapped single cesium atom in a far-off-resonance microscopic optical dipole trap (FORT). To generate an optical dipole trap, a far-red-detuned 1064 nm laser beam is tightly focused by using a high numerical aperture lens, a typical trap depth is 2 mK and trap waist is 2.3 m. To obtain a maximum probability of pulsed excitation, the frequency of the pulsed laser should be resonant with the atomic energy levels and the trapped single atom must be excited with a -pulse. However, the interaction between the FORT laser and the atoms causes AC Stark shifts of the atomic energy levels. Thus, in order to demonstrate the resonant pulsed excitation, it is important to calculate and measure the shift of 6S1/2|Fg=4,mF=+4-6P3/2|Fe=5,mF=+5 cyclical transition in the FORT. For a two-level system, the probability of pulsed excitation can be described by Rabi oscillations with a characteristic Rabi frequency . With an optimized time sequence, we experimentally demonstrate the Rabi oscillation between the ground state and the excited state, and the peak power of -pulse laser is about 1.25 mW. We also measure the temporal envelope of single photons after a -pulse excitation. A gated pulsed excitation and cooling technique are used to reduce the possibility that atoms are heated by -pulse laser. The typical trapping lifetime of single cesium atom is extended from~108 ups to~2536 ms. The corresponding number of excitations is improved from 108 to 360000. The second-order intensity correlations of the emitted single-photon are characterized by implementing Hanbury Brown-Twiss setup. The statistics shows a strong anti-bunching with a value of 0.09 for the second-order correlation at zero delay. In the future, we will perform a Hong-Ou-Mandel two-photon interference experiment to analyze the indistinguishability of the single photons. We will also trap single atoms in a magic-wavelength optical dipole trap where the ground and the excited states have the same shift.
      通信作者: 王军民, wwjjmm@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274213,61475091,61205215)和国家重点基础研究发展计划(批准号:2012CB921601)资助的课题.
      Corresponding author: Wang Jun-Min, wwjjmm@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274213, 61475091, 61205215) and the National Basic Research Program of China (Grant No. 2012CB921601).
    [1]

    Grangier P, Abram I 2004 New J. Phys. 6 85

    [2]

    Hessmo B, Usachev P, Heydari H, Björk G 2004 Phys. Rev. Lett. 92 180401

    [3]

    Lombardi E, Sciarrino F, Popescu S, Martini F D 2002 Phys. Rev. Lett. 88 070402

    [4]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [5]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46

    [6]

    Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 135

    [7]

    Darquie B, Jones M P A, Dingjan J, Beugnon J, Bergamini S, Sortais Y, Messin G, Browaeys A, Grangier P 2005 Science 309 454

    [8]

    Garcia S, Maxein D, Hohmann L, Reichel J, Long R 2013 Appl. Phys. Lett. 103 114103

    [9]

    Ding X, He Y, Duan Z C, Gregersen N, Chen M C, Unsleber S, Maier S, Schneider C, Kamp M, Höfling S, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 116 020401

    [10]

    Kurtsiefer C, Mayer S, Zarda P, Weinfurter H 2000 Phys. Rev. Lett. 85 290

    [11]

    Brunel C, Lounis B, Tamarat P, Orrit M 1999 Phys. Rev. Lett. 83 2722

    [12]

    McKeever J, Boca A, Boozer A D, Miller R, Buck J R, Kuzmich A, Kimble H J 2004 Science 303 1992

    [13]

    Keller M, Lange B, Hayasaka K, Lange W, Walther H 2004 Nature 431 1075

    [14]

    Kurucz R L, Bell B 2013 Phys. Rev. A 87 063408

    [15]

    Hanbury R B, Twiss R Q 1956 Nature 177 27

    [16]

    He J, Yang B D, Cheng Y J, Zhang T C, Wang J M 2011 Front. Phys. 6 262

    [17]

    He J, Yang B D, Zhang T C, Wang J M 2011 Phys. Scr. 84 025302

    [18]

    Diao W T, He J, Liu B, Wang J Y, Wang J M 2014 Acta Phys. Sin. 63 023701 (in Chinese)[刁文婷, 何军, 刘贝, 王杰英, 王军民2014 63 023701]

    [19]

    Jin G, Liu B, He J, Wang J M 2016 Appl. Phys. Express 9 072702

    [20]

    Wang J Y, Liu B, Diao W T, Jin G, He J, Wang J M 2014 Acta Phys. Sin. 63 053202 (in Chinese)[王杰英, 刘贝, 刁文婷, 靳刚, 何军, 王军民2014 63 053202]

    [21]

    Liu B, Jin G, Wang J Y, He J, Wang J M 2015 Acta Opt. Sin. 35 1102001 (in Chinese)[刘贝, 靳刚, 王杰英, 何军, 王军民2015光学学报35 1102001]

    [22]

    Liu B, Jin G, He J, Wang J M 2016 Phys. Rev. A 94 013409

    [23]

    Phoonthong P, Douglas P, Wickenbrock A, Renzoni F 2010 Phys. Rev. A 82 013406

    [24]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044

  • [1]

    Grangier P, Abram I 2004 New J. Phys. 6 85

    [2]

    Hessmo B, Usachev P, Heydari H, Björk G 2004 Phys. Rev. Lett. 92 180401

    [3]

    Lombardi E, Sciarrino F, Popescu S, Martini F D 2002 Phys. Rev. Lett. 88 070402

    [4]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [5]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46

    [6]

    Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 135

    [7]

    Darquie B, Jones M P A, Dingjan J, Beugnon J, Bergamini S, Sortais Y, Messin G, Browaeys A, Grangier P 2005 Science 309 454

    [8]

    Garcia S, Maxein D, Hohmann L, Reichel J, Long R 2013 Appl. Phys. Lett. 103 114103

    [9]

    Ding X, He Y, Duan Z C, Gregersen N, Chen M C, Unsleber S, Maier S, Schneider C, Kamp M, Höfling S, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 116 020401

    [10]

    Kurtsiefer C, Mayer S, Zarda P, Weinfurter H 2000 Phys. Rev. Lett. 85 290

    [11]

    Brunel C, Lounis B, Tamarat P, Orrit M 1999 Phys. Rev. Lett. 83 2722

    [12]

    McKeever J, Boca A, Boozer A D, Miller R, Buck J R, Kuzmich A, Kimble H J 2004 Science 303 1992

    [13]

    Keller M, Lange B, Hayasaka K, Lange W, Walther H 2004 Nature 431 1075

    [14]

    Kurucz R L, Bell B 2013 Phys. Rev. A 87 063408

    [15]

    Hanbury R B, Twiss R Q 1956 Nature 177 27

    [16]

    He J, Yang B D, Cheng Y J, Zhang T C, Wang J M 2011 Front. Phys. 6 262

    [17]

    He J, Yang B D, Zhang T C, Wang J M 2011 Phys. Scr. 84 025302

    [18]

    Diao W T, He J, Liu B, Wang J Y, Wang J M 2014 Acta Phys. Sin. 63 023701 (in Chinese)[刁文婷, 何军, 刘贝, 王杰英, 王军民2014 63 023701]

    [19]

    Jin G, Liu B, He J, Wang J M 2016 Appl. Phys. Express 9 072702

    [20]

    Wang J Y, Liu B, Diao W T, Jin G, He J, Wang J M 2014 Acta Phys. Sin. 63 053202 (in Chinese)[王杰英, 刘贝, 刁文婷, 靳刚, 何军, 王军民2014 63 053202]

    [21]

    Liu B, Jin G, Wang J Y, He J, Wang J M 2015 Acta Opt. Sin. 35 1102001 (in Chinese)[刘贝, 靳刚, 王杰英, 何军, 王军民2015光学学报35 1102001]

    [22]

    Liu B, Jin G, He J, Wang J M 2016 Phys. Rev. A 94 013409

    [23]

    Phoonthong P, Douglas P, Wickenbrock A, Renzoni F 2010 Phys. Rev. A 82 013406

    [24]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044

  • [1] 刘岩鑫, 王志辉, 管世军, 王勤霞, 张鹏飞, 李刚, 张天才. 基于微尺度光学偶极阱的一维单原子阵列的实验制备.  , 2024, 73(10): 103701. doi: 10.7498/aps.73.20240135
    [2] 闫玮植, 范青, 杨鹏飞, 李刚, 张鹏飞, 张天才. 微光学腔内单原子的俘获及其耦合强度的精确调控.  , 2023, 72(11): 114202. doi: 10.7498/aps.72.20222220
    [3] 尚向军, 李叔伦, 马奔, 陈瑶, 何小武, 倪海桥, 牛智川. 量子点单光子源的光纤耦合.  , 2021, 70(8): 087801. doi: 10.7498/aps.70.20201605
    [4] 陈泽锐, 刘光存, 俞振华. 谐振子势阱中双费米原子光钟的碰撞频移.  , 2021, 70(18): 180602. doi: 10.7498/aps.70.20210243
    [5] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量.  , 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [6] 王晓锋, 李玉清, 冯国胜, 武寄洲, 马杰, 肖连团, 贾锁堂. 基于磁悬浮大体积交叉光学偶极阱的Dimple光阱装载研究.  , 2016, 65(8): 083701. doi: 10.7498/aps.65.083701
    [7] 任瑞敏, 尹亚玲, 王志章, 郭超修, 印建平. 亚微米局域空心光束的产生及其在单原子囚禁与冷却中的应用理论研究.  , 2016, 65(11): 114101. doi: 10.7498/aps.65.114101
    [8] 周飞, 曹原, 雍海林, 彭承志, 王向斌. 基于电光效应的光子频移研究.  , 2014, 63(20): 204202. doi: 10.7498/aps.63.204202
    [9] 王杰英, 刘贝, 刁文婷, 靳刚, 何军, 王军民. 磁光阱中单原子荧光信号的优化及单原子的高效装载.  , 2014, 63(5): 053202. doi: 10.7498/aps.63.053202
    [10] 刁文婷, 何军, 刘贝, 王杰英, 王军民. 利用蓝失谐激光诱导微型光学偶极阱中冷原子间的光助碰撞提高单原子制备概率.  , 2014, 63(2): 023701. doi: 10.7498/aps.63.023701
    [11] 余学才, 汪平和, 张利勋. 光晶格动量依赖偶极势中原子运动.  , 2013, 62(14): 144202. doi: 10.7498/aps.62.144202
    [12] 孙江, 孙娟, 王颖, 苏红新. 双光子共振非简并四波混频测量Ba原子里德伯态的碰撞展宽和频移.  , 2012, 61(11): 114214. doi: 10.7498/aps.61.114214
    [13] 王成, 许鹏, 何晓东, 王谨, 詹明生. 单原子在两个远红失谐光偶极阱中的转移.  , 2012, 61(20): 203701. doi: 10.7498/aps.61.203701
    [14] 陈微, 邢名欣, 任刚, 王科, 杜晓宇, 张冶金, 郑婉华. 光子晶体微腔中高偏振单偶极模的研究.  , 2009, 58(6): 3955-3960. doi: 10.7498/aps.58.3955
    [15] 张鹏飞, 许忻平, 张海潮, 周善钰, 王育竹. 紫外光诱导原子脱附技术在单腔磁阱装载中的应用.  , 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
    [16] 窦瑞芬, 贾金锋, 徐茂杰, 潘明虎, 何 珂, 张丽娟, 薛其坤. 单畴的单原子In纳米线阵列的制备与研究.  , 2004, 53(3): 871-876. doi: 10.7498/aps.53.871
    [17] 刘涛, 张天才, 王军民, 彭堃墀. 高精细度光学微腔中原子的偶极俘获.  , 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
    [18] 张连水, 李云静, 李晓苇, 傅广生. 碘分子单频及双频多光子光谱.  , 1997, 46(6): 1088-1095. doi: 10.7498/aps.46.1088
    [19] 初鑫钊, 刘淑琴, 董太乾. 铷原子频标中的微波功率频移.  , 1994, 43(7): 1072-1076. doi: 10.7498/aps.43.1072
    [20] 吴式枢. 原子核的单粒位阱(Ⅰ)——一个定理.  , 1976, 25(5): 433-443. doi: 10.7498/aps.25.433
计量
  • 文章访问数:  6302
  • PDF下载量:  290
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-14
  • 修回日期:  2016-09-05
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map