-
For an electromagnetically levitated (EML) molten droplet, there usually exist some unstable factors, such as internal fluid convection, quick spin and horizontal displacement and so on. As a result, stabilizing the droplet is very important for EML technology. In this paper, a horizontal static magnetic field is imposed on an EML Cu droplet through a U-shaped static magnetic component. The shape oscillation of a Cu droplet is recorded continuously under different magnetic field intensities using a high speed camera. The effects of static magnetic field on the oscillation frequency, amplitude and spin angle of the droplet are analyzed from the recorded data of droplet shape. The result shows that when the strength of the static magnetic field exceeds 0.3 T the solid Cu is levitated statically without any spin and horizontal movement. For molten Cu droplet, its amplitudes of the R-, A and Dmax are reduced by 25%, 76% and 60% respectively when a static magnetic field with 0.15 T is imposed. With the increase of magnetic field strength the amplitude and frequency of oscillation decease continuously. However, when the intensity of the static magnetic field is 0.3 T, its frequency is 1 Hz higher than that when the intensity of the static magnetic field is 0.2 T. Finally, the result indicates that the horizontal static magnetic field can inhibit the spin of the levitated droplets. For instance, when the strength of the magnetic field is 0.53 T the droplet spins are within a very narrow angle of 10°, which is quite smaller than in the case without static magnetic field. These results exhibit that the imposed horizontal static magnetic field can effectively improve the stability of electromagnetic levitated droplet.
-
Keywords:
- electromagnetic levitation /
- static magnetic field /
- Cu droplet /
- oscillation
[1] Chang F E, Jian Z Y 2005 Foundry Technol. 26 918 (in Chinese) [常芳娥, 坚曾运 2005 铸造技术 26 918]
[2] Wang Y Q, Li L, Zhou J X, Li X J, Wang H Z 2008 Metallurg. Anal. 28 16 (in Chinese) [王永清, 李雷, 周金香, 李小佳, 王海舟 2008 冶金分析 28 16]
[3] Ozawa S, Koda T, Adachi M, Morohoshi M, Watanabe M, Hibiya T 2009 J. Appl. Phys. 106 034907
[4] Wei B B, Yang G C 1988 Acta Aeronaut. Astron. Sin. 9 589 (in Chinese) [魏炳波, 杨根仓 1988 航空学报 9 589]
[5] Li G, Gao Y P, Sun Y N, Chi Z H, Liu R P 2008 Chin. Phys. B 17 3412
[6] Wang H P, Cao C D, Wei B 2004 Appl. Phys. Lett. 84 4062
[7] Liu X M, Liu G Q, Li D P, Wang H B, Song X Y 2014 Acta Phys. Sin. 63 098102 (in Chinese) [刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳 2014 63 098102]
[8] Zhang L B, Dai F P, Xiong Y Y, Wei B B 2006 Acta Phys. Sin. 55 419 (in Chinese) [张蜡宝, 代富平, 熊予莹, 魏炳波 2006 55 419]
[9] Royer Z L, Tackes C, LeSar R, Napolitano R E 2013 J. Appl. Phys. 113 214901
[10] Zhong X Y, Chen J G 1996 Physics 25 565 (in Chinese) [钟晓燕, 陈佳圭 1996 物理 25 565]
[11] Bojarevics V, Pericleous K 2003 ISIJ Int. 43 890
[12] Hyers R W 2005 Meas. Sci. Technol. 16 394
[13] Rayleigh L 1879 Proc. R. Soc. London 29 71
[14] Cummings D L, Blackburn D A 1991 J. Fluid Mech. 224 395
[15] Ozawa S, Morohoshi K, Hibiya T, Fukuyama H 2010 J. Appl. Phys. 107 014910
[16] Bullard C, Hyers R W, Abedian B 2005 IEEE Trans. Magn. 41 2230
[17] Egry I, Giffard H, Schneider S 2005 Meas. Sci. Technol. 16 426
[18] Essmann U, Kiessiq H 1979 Mat. Res. Bull. 14 1139
[19] Ma W Z, Ji C C, Li J G 2002 Acta Phys. Sin. 51 2233 (in Chinese) [马伟增, 季诚昌, 李建国 2002 51 2233]
[20] Sun M Y, Wan Q, Qin F 1991 Rare Metals 15 61 (in Chinese) [孙茂友, 万群, 秦福 1991 稀有金属 15 61]
[21] Yasuda H, Ohnaka I, Ninomiya Y, Ishii R, Fujita S, Kishio K 2004 J. Crystal Growth 260 475
[22] Sugioka K, Tsukada T, Fukuyama H, Kobatake H, Awaji S 2010 Int. J. Heat Mass Transfer 53 4228
-
[1] Chang F E, Jian Z Y 2005 Foundry Technol. 26 918 (in Chinese) [常芳娥, 坚曾运 2005 铸造技术 26 918]
[2] Wang Y Q, Li L, Zhou J X, Li X J, Wang H Z 2008 Metallurg. Anal. 28 16 (in Chinese) [王永清, 李雷, 周金香, 李小佳, 王海舟 2008 冶金分析 28 16]
[3] Ozawa S, Koda T, Adachi M, Morohoshi M, Watanabe M, Hibiya T 2009 J. Appl. Phys. 106 034907
[4] Wei B B, Yang G C 1988 Acta Aeronaut. Astron. Sin. 9 589 (in Chinese) [魏炳波, 杨根仓 1988 航空学报 9 589]
[5] Li G, Gao Y P, Sun Y N, Chi Z H, Liu R P 2008 Chin. Phys. B 17 3412
[6] Wang H P, Cao C D, Wei B 2004 Appl. Phys. Lett. 84 4062
[7] Liu X M, Liu G Q, Li D P, Wang H B, Song X Y 2014 Acta Phys. Sin. 63 098102 (in Chinese) [刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳 2014 63 098102]
[8] Zhang L B, Dai F P, Xiong Y Y, Wei B B 2006 Acta Phys. Sin. 55 419 (in Chinese) [张蜡宝, 代富平, 熊予莹, 魏炳波 2006 55 419]
[9] Royer Z L, Tackes C, LeSar R, Napolitano R E 2013 J. Appl. Phys. 113 214901
[10] Zhong X Y, Chen J G 1996 Physics 25 565 (in Chinese) [钟晓燕, 陈佳圭 1996 物理 25 565]
[11] Bojarevics V, Pericleous K 2003 ISIJ Int. 43 890
[12] Hyers R W 2005 Meas. Sci. Technol. 16 394
[13] Rayleigh L 1879 Proc. R. Soc. London 29 71
[14] Cummings D L, Blackburn D A 1991 J. Fluid Mech. 224 395
[15] Ozawa S, Morohoshi K, Hibiya T, Fukuyama H 2010 J. Appl. Phys. 107 014910
[16] Bullard C, Hyers R W, Abedian B 2005 IEEE Trans. Magn. 41 2230
[17] Egry I, Giffard H, Schneider S 2005 Meas. Sci. Technol. 16 426
[18] Essmann U, Kiessiq H 1979 Mat. Res. Bull. 14 1139
[19] Ma W Z, Ji C C, Li J G 2002 Acta Phys. Sin. 51 2233 (in Chinese) [马伟增, 季诚昌, 李建国 2002 51 2233]
[20] Sun M Y, Wan Q, Qin F 1991 Rare Metals 15 61 (in Chinese) [孙茂友, 万群, 秦福 1991 稀有金属 15 61]
[21] Yasuda H, Ohnaka I, Ninomiya Y, Ishii R, Fujita S, Kishio K 2004 J. Crystal Growth 260 475
[22] Sugioka K, Tsukada T, Fukuyama H, Kobatake H, Awaji S 2010 Int. J. Heat Mass Transfer 53 4228
Catalog
Metrics
- Abstract views: 6484
- PDF Downloads: 184
- Cited By: 0