搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学相位锁定激光在原子玻色-爱因斯坦凝聚中实现拉曼耦合

孟增明 黄良辉 彭鹏 陈良超 樊浩 王鹏军 张靖

引用本文:
Citation:

光学相位锁定激光在原子玻色-爱因斯坦凝聚中实现拉曼耦合

孟增明, 黄良辉, 彭鹏, 陈良超, 樊浩, 王鹏军, 张靖

Raman coupling in atomic Bose-Einstein condensed with phase-locked laser system

Meng Zeng-Ming, Huang Liang-Hui, Peng Peng, Chen Liang-Chao, Fan Hao, Wang Peng-Jun, Zhang Jing
PDF
导出引用
  • 采用光学相位锁定环路技术将外腔反馈式半导体激光器锁定到与钛宝石激光器输出激光频率上. 锁定后两束激光的差频线宽从MHz降低到Hz量级, 同时两束激光的频率差可实现几百兆赫兹到7 GHz的精密调节. 锁定的两束激光作用在铷原子玻色-爱因斯坦凝聚的两个基态超精细态F=2, 1, 观测到在两个超精细态之间的拉曼跃迁. 该技术可用于超冷原子两个超精细态之间自旋轨道耦合.
    We present a simple, versatile and reliable phase-locked laser system. The system consists of an external cavity diode laser, Ti: Sapphire laser, fast detector, phase frequency detector (PFD) and loop filters. The beat signal of the laser is detected with a detector. From the PFD, we can obtain an error signal. The loop filter converts the output of the PFD into a control voltage and thus drives piezoelectric ceramic transducer (PZT) and current of diode laser. After locking, the bandwidth of the beat signal is reduced form MHz to Hz. So the line-width of the diode laser is almost close to that of Ti: Sapphire laser. The locking range is from sub-MHz to 10 GHz. So it is used for the ground hyperfine state transition of 87Rb. Through the use of the phase-locked loop system, we can drive the transition of 87Rb atoms between two ground hyperfine states F=2 and 1. The system is used to demonstrate Raman transition between two states through changing the detuning of the beat signal. From this, we can obtain Rabi frequency = 10 kHz. So, this system can be used to induce an effective vector gauge potential for 87Rb Bose-Einstein condensed and realize the spin-orbit coupling.
      通信作者: 张靖, jzhang74@sxu.edu.cn,jzhang74@yahoo.com
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB921601)、国家自然科学基金(批准号: 11234008, 11222430)、国家自然科学基金委员会与香港研究资助局合作研究项目(批准号: 11361161002)和三晋学者计划专项经费资助的课题.
      Corresponding author: Zhang Jing, jzhang74@sxu.edu.cn,jzhang74@yahoo.com
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB921601), the National Natural Science Foundation of China (Grant Nos. 11234008, 11222430), the Co-foundation of the National Natural Science Foundation of China and the Research Grants Council of Hongkong, China (Grant No. 11361161002), and the Program for Sanjin Scholars of Shanxi Province, China.
    [1]

    Anderson M H, Ensher J R, Mattews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [2]

    Davis K B, Mewes M O, Andrews M R, Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [3]

    Demarco B, Jin D S 1999 Science 285 1703

    [4]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885

    [5]

    Chin C 2010 Rev. Mod. Phys. 82 1225

    [6]

    Spielman I B 2009 Phys. Rev. A 79 063613

    [7]

    Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V, Spielman I B 2009 Phys. Rev. Lett. 102 130401

    [8]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83

    [9]

    Fu Z K, Wang P J, Chai S J, Huang L H, Zhang J 2011 Phys. Rev. A 84 043609

    [10]

    Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301

    [11]

    Fu Z K, Huang L H, Meng Z M, Wang P J, Liu X J, Pu H, Hu H, Zhang J 2013 Phys. Rev. A 87 053619

    [12]

    Lu H, Zhu S B, Qian J, Wang Y Z 2015 Chin. Phys. B 24 090308

    [13]

    Xie W F, He Y Z, Bao C G 2015 Chin. Phys. B 24 060305

    [14]

    Beeler M C, Williams R A, Jimenez G K, LeBlanc L J, Perry A R, Spielman I B 2013 Nature 498 201

    [15]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301

    [16]

    Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, Pan J W 2014 Nat. Phys. 10 314

    [17]

    Fu Z K, Huang L H, Meng Z M, Wang P J, Zhang L, Zhang S Z, Zhai H, Zhang P, Zhang J 2014 Nat. Phys. 10 110

    [18]

    Dalibard J, Gerbier F, Juzeliūnas G, Öhberg P 2011 Rev. Mod. Phys. 83 1523

    [19]

    Wang P J, Zhang J 2014 Front. Phys. 9 598

    [20]

    Zhang J, Hu H, Liu X J, Pu H 2014 Annu. Rev. Cold Atoms Molecul. 2 81

    [21]

    Huang L H, Wang P J, Fu Z K, Zhang J 2014 Chin. Phys. B 23 013402

    [22]

    Meng Z M, Zhang J 2013 Acta Opt. Sin. 33 0714001 (in Chinese) [孟增明, 张靖 2013 光学学报 33 0714001]

    [23]

    Appel J, MacRae A, Lvovsky A I 2009 Meas. Sci. Technol. 20 055302

    [24]

    Hockel D, Scholz M, Benson O 2009 Appl. Phys. B 94 429

    [25]

    Marino A M, Stroud Jr C R 2008 Rev. Sci. Instrum. 79 013104

    [26]

    Cacciapuoti L, Angelis M D, Prevedelli M, Stuhler J, Tino G M 2005 Rev. Sci. Instrum. 76 053111

    [27]

    Wang X L, Tao T J, Cheng B, Wu B, Xu Y F, Wang Z Y, Lin Q 2011 Chin. Phys. Lett. 28 084214

    [28]

    Ricci L, Weidemuller M, Esslinger T, Hemmerich A, Zimmermann C, Vuletic V, Konig W, Hansch T W 1995 Opt. Commun. 117 541

    [29]

    Cheng F Y, Meng Z M, Zhang J 2012 J. Shanxi Univ. 35 79 (in Chinese) [程峰钰, 孟增明, 张靖 2012 山西大学学报 35 79]

    [30]

    Chai S J, Wang P J, Fu Z K, Huang L H, Zhang J 2012 Acta Sin. Quantum Opt. 18 171 (in Chinese) [柴世杰, 王鹏军, 付正坤, 黄良辉, 张靖 2012 量子光学学报 18 171]

    [31]

    Huang L H, Wang P J, Fu Z K, Zhang J 2014 Acta Opt. Sin. 34 0727002 (in Chinese) [黄良辉, 王鹏军, 付正坤, 张靖 2014 光学学报 34 0727002]

  • [1]

    Anderson M H, Ensher J R, Mattews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [2]

    Davis K B, Mewes M O, Andrews M R, Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [3]

    Demarco B, Jin D S 1999 Science 285 1703

    [4]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885

    [5]

    Chin C 2010 Rev. Mod. Phys. 82 1225

    [6]

    Spielman I B 2009 Phys. Rev. A 79 063613

    [7]

    Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V, Spielman I B 2009 Phys. Rev. Lett. 102 130401

    [8]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83

    [9]

    Fu Z K, Wang P J, Chai S J, Huang L H, Zhang J 2011 Phys. Rev. A 84 043609

    [10]

    Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301

    [11]

    Fu Z K, Huang L H, Meng Z M, Wang P J, Liu X J, Pu H, Hu H, Zhang J 2013 Phys. Rev. A 87 053619

    [12]

    Lu H, Zhu S B, Qian J, Wang Y Z 2015 Chin. Phys. B 24 090308

    [13]

    Xie W F, He Y Z, Bao C G 2015 Chin. Phys. B 24 060305

    [14]

    Beeler M C, Williams R A, Jimenez G K, LeBlanc L J, Perry A R, Spielman I B 2013 Nature 498 201

    [15]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301

    [16]

    Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, Pan J W 2014 Nat. Phys. 10 314

    [17]

    Fu Z K, Huang L H, Meng Z M, Wang P J, Zhang L, Zhang S Z, Zhai H, Zhang P, Zhang J 2014 Nat. Phys. 10 110

    [18]

    Dalibard J, Gerbier F, Juzeliūnas G, Öhberg P 2011 Rev. Mod. Phys. 83 1523

    [19]

    Wang P J, Zhang J 2014 Front. Phys. 9 598

    [20]

    Zhang J, Hu H, Liu X J, Pu H 2014 Annu. Rev. Cold Atoms Molecul. 2 81

    [21]

    Huang L H, Wang P J, Fu Z K, Zhang J 2014 Chin. Phys. B 23 013402

    [22]

    Meng Z M, Zhang J 2013 Acta Opt. Sin. 33 0714001 (in Chinese) [孟增明, 张靖 2013 光学学报 33 0714001]

    [23]

    Appel J, MacRae A, Lvovsky A I 2009 Meas. Sci. Technol. 20 055302

    [24]

    Hockel D, Scholz M, Benson O 2009 Appl. Phys. B 94 429

    [25]

    Marino A M, Stroud Jr C R 2008 Rev. Sci. Instrum. 79 013104

    [26]

    Cacciapuoti L, Angelis M D, Prevedelli M, Stuhler J, Tino G M 2005 Rev. Sci. Instrum. 76 053111

    [27]

    Wang X L, Tao T J, Cheng B, Wu B, Xu Y F, Wang Z Y, Lin Q 2011 Chin. Phys. Lett. 28 084214

    [28]

    Ricci L, Weidemuller M, Esslinger T, Hemmerich A, Zimmermann C, Vuletic V, Konig W, Hansch T W 1995 Opt. Commun. 117 541

    [29]

    Cheng F Y, Meng Z M, Zhang J 2012 J. Shanxi Univ. 35 79 (in Chinese) [程峰钰, 孟增明, 张靖 2012 山西大学学报 35 79]

    [30]

    Chai S J, Wang P J, Fu Z K, Huang L H, Zhang J 2012 Acta Sin. Quantum Opt. 18 171 (in Chinese) [柴世杰, 王鹏军, 付正坤, 黄良辉, 张靖 2012 量子光学学报 18 171]

    [31]

    Huang L H, Wang P J, Fu Z K, Zhang J 2014 Acta Opt. Sin. 34 0727002 (in Chinese) [黄良辉, 王鹏军, 付正坤, 张靖 2014 光学学报 34 0727002]

  • [1] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质.  , 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [2] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干.  , 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [3] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性.  , 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [4] 薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽. 自旋轨道耦合Su-Schrieffer-Heeger原子链系统的电子输运特性.  , 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [5] 陈星, 薛潇博, 张升康, 马余全, 费鹏, 姜元, 葛军. 两体相互作用费米系统在自旋轨道耦合和塞曼场中的基态转变.  , 2021, 70(8): 083401. doi: 10.7498/aps.70.20201456
    [6] 施婷婷, 汪六九, 王璟琨, 张威. 自旋轨道耦合量子气体中的一些新进展.  , 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [7] 田晶, 侯美江, 江阳, 张红旭, 白光富, 冯豪. 一种高灵敏度复合环形腔结构的光纤激光拍频位移传感方案.  , 2020, 69(18): 184217. doi: 10.7498/aps.69.20200385
    [8] 梁滔, 李铭. 自旋轨道耦合系统中的整数量子霍尔效应.  , 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [9] 李志强, 王月明. 一维谐振子束缚的自旋轨道耦合玻色气体.  , 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [10] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变.  , 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [11] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质.  , 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [12] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构.  , 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [13] 龚士静, 段纯刚. 金属表面Rashba自旋轨道耦合作用研究进展.  , 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [14] 刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌. 强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学.  , 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [15] 张磊, 李辉武, 胡梁宾. 二维自旋轨道耦合电子气中持续自旋螺旋态的稳定性的研究.  , 2012, 61(17): 177203. doi: 10.7498/aps.61.177203
    [16] 杨杰, 董全力, 江兆潭, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响.  , 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [17] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响.  , 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [18] 谢红云, 金冬月, 何莉剑, 张 蔚, 王 路, 张万荣, 王 圩. 基于DFB激光器的光学微波信号的产生.  , 2008, 57(7): 4558-4563. doi: 10.7498/aps.57.4558
    [19] 朱 博, 桂永胜, 仇志军, 周文政, 姚 炜, 郭少令, 褚君浩, 张福甲. 窄禁带稀磁半导体二维电子气的拍频振荡.  , 2006, 55(2): 786-790. doi: 10.7498/aps.55.786
    [20] 侯岩雪, 马海强, 吴令安. 一种测量弱光拍频的方法.  , 2005, 54(2): 574-577. doi: 10.7498/aps.54.574
计量
  • 文章访问数:  7067
  • PDF下载量:  274
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-19
  • 修回日期:  2015-09-25
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map