-
Using the light-assisted-collisions (LAC) and the feedback controlling loop on a quadrupole magnetic field, we have realized high probability of single atoms in the far-off-resonance trap (FORT). We analyzed the principle of LAC irradiated by a red-detuning laser or by a blue-detuning laser. And we also experimentally proved that using the red-detuned laser (the blue-detuned laser) we can realize 50% (80%) of single atom probability in the FORT. Using the feedback controlling loop, we realized 95% of single atom probability in the FORT, which opens a way for a two-dimensional FORT array. When the number of atom was zero, we decreased the gradient of the quadrupole magnetic field to quickly load atoms, and when we had more than one atom in the FORT, we switched on the blue-detuned laser to irradiate the atoms to play LAC. We measured the second-order coherence degree of the fluorescence photons emitted by the atom trapped in the FORT by using HBT scheme and found it was g(2)(τ=0)=0.08.
-
Keywords:
- single atoms /
- far-off-resonance trap /
- light-assisted-collisions /
- the second-order degree of coherence of optical field
[1] Grimm R, Weidemuller M, Ovchinnikov Y 2000 Adv. At. Mol. Opt. Phys. 42 95
[2] Miller J D, Cline R A, Heinzen D J 1993 Phys. Rev. A 47 4567(R)
[3] Yavuz D D, Kulatunga P B, Urban E, Johnson T A, Proite N, Henage T, Walker T G, Saffman M 2006 Phys. Rev. Lett. 96 063001
[4] Jones M P A, Beugnon J, Gaëtan A, Zhang J, Messin G, Browaeys, Grangier P 2007 Phys. Rev. A 75 040301 (R)
[5] Hu Z, Kimble H J 1994 Opt. Lett. 19 1888
[6] Ruschewitz F, Bettermann D, Peng J L, Ertmer W 1996 Europhys. Lett. 34 651
[7] Haubrich D, Schadwinkel H, Strauch F, Ueberholz B, Wynands R, Meschede D 1996 Europhys. Lett. 34 663
[8] Shclosser N, Reymond G, Protsenko I, Grangier P 2001 Nature 411 1024
[9] Schlosser N, Reymond G, Grangier P 2002 Phys. Rev. Lett. 89 023005
[10] Yoon S, Choi Y, Park S, Kim J, Lee J H, An K 2006 Appl. Phys. Lett. 88 211104
[11] Grnzweig T, Hilliard A, McGovern M, Andersen M F 2010 Nature Phys. 6 952
[12] Grnzweig T, Hilliard A, McGovern M, Andersen M F 2011 Quantum Inf. Process. 10 925
[13] He J, Yang B D, Cheng Y J, Zhang T C, Wang J M 2011 Front. Phys. 6 262
[14] He J, Wang J, Yang B D, Zhang T C, Wang J M 2009 Chin. Phys. B 18 3404
[15] Carmichael H J, Walls D F 1976 J. Phys. B: At. Mol. Phys. 9 1199
-
[1] Grimm R, Weidemuller M, Ovchinnikov Y 2000 Adv. At. Mol. Opt. Phys. 42 95
[2] Miller J D, Cline R A, Heinzen D J 1993 Phys. Rev. A 47 4567(R)
[3] Yavuz D D, Kulatunga P B, Urban E, Johnson T A, Proite N, Henage T, Walker T G, Saffman M 2006 Phys. Rev. Lett. 96 063001
[4] Jones M P A, Beugnon J, Gaëtan A, Zhang J, Messin G, Browaeys, Grangier P 2007 Phys. Rev. A 75 040301 (R)
[5] Hu Z, Kimble H J 1994 Opt. Lett. 19 1888
[6] Ruschewitz F, Bettermann D, Peng J L, Ertmer W 1996 Europhys. Lett. 34 651
[7] Haubrich D, Schadwinkel H, Strauch F, Ueberholz B, Wynands R, Meschede D 1996 Europhys. Lett. 34 663
[8] Shclosser N, Reymond G, Protsenko I, Grangier P 2001 Nature 411 1024
[9] Schlosser N, Reymond G, Grangier P 2002 Phys. Rev. Lett. 89 023005
[10] Yoon S, Choi Y, Park S, Kim J, Lee J H, An K 2006 Appl. Phys. Lett. 88 211104
[11] Grnzweig T, Hilliard A, McGovern M, Andersen M F 2010 Nature Phys. 6 952
[12] Grnzweig T, Hilliard A, McGovern M, Andersen M F 2011 Quantum Inf. Process. 10 925
[13] He J, Yang B D, Cheng Y J, Zhang T C, Wang J M 2011 Front. Phys. 6 262
[14] He J, Wang J, Yang B D, Zhang T C, Wang J M 2009 Chin. Phys. B 18 3404
[15] Carmichael H J, Walls D F 1976 J. Phys. B: At. Mol. Phys. 9 1199
Catalog
Metrics
- Abstract views: 7164
- PDF Downloads: 367
- Cited By: 0