-
Effects of additional permanent magnet on the levitation force of a single domain GdBCO bulk superconductor have been investigated with a cylindrical permanent magnet in their coaxial configuration under zero field cooled state at liquid nitrogen temperature. The magnetic polarity N of cylindrical permanent magnet is pointed to the GdBCO bulk superconductor, and the two additional permanent magnet of rectangular parallelepiped shape are fixed on two sides of the GdBCO bulk superconductor in different arrangments. It was found that the levitation force can be improved to about 61.5 N, which is more than 2 times higher than that (29.8 N) of the system without the additional permanent magnet, when the magnetic polarity N of two additional permanent magnets points to the GdBCO bulk superconductor in horizontal direction. The levitation force is reduced to 19.6N, which is about 65.8% of the levitation force 29.8N of the system without the additional permanent magnets, when the magnetic polarity N of two additional permanent magnet are antiparallel to the magnetic polarity N of the cylindrical permanent magnet. The results indicate that the levitation force of high temperature bulk superconductors can be effectively improved by introducing additional permanent magnet based on reasonably designing the system configuration, which is very important during the practical design and applications of superconducting magnetic levitation systems.
-
Keywords:
- single domain GdBCO /
- permanent magnet /
- levitation force
[1] John R H, Shaul H,Tomotake M 2005 Supercond Sci. Tech. 18 S1
[2] Werfel F N, Floegel-Delor U,Rothfeld R 2005 Supercond Sci. Tech. 18 S19
[3] Miyagawa Y, Kameno H, Takahata R 1999 IEEE Trans. Appl. Supercond. 9 996
[4] Ohashi S, Tamura S, Hirane Y 1999 IEEE Trans. Appl. Supercond. 9 988
[5] Nuria D V, Alvaro S, Carles N 2008 Appl.Phys.Lett. 92 042505
[6] Wang J S, Wang S Y 2002 Physica C 378—381 809
[7] Sha J J, Yao Z W 2000 Acta Phys.Sin. 49 1356 (in Chinese)[沙建军、姚仲文 2000 49 1356]
[8] Feng Y, Zhou L,Yang W M, Zhang C P 2000 Acta Phys.Sin. 49 146 (in Chinese) [冯 勇、周 廉、杨万民、张翠萍 2000 49 146]
[9] Li G Z,Yang W M 2010 Acta Phys.Sin.59 5028(in Chinese) [李国政、杨万民 2010 59 5028]
[10] Yang W M, Zhou L, Feng Y 1999 Chin. Phys. 8 533
[11] Zhu M, Ren Z Y, Wang S Y 2002 Chin. J. Low Temp. Phys. 24 213[朱 敏、任仲友、王素玉 2002 低温 24 213]
[12] Hu L F, Zhou L, Zhang P X 2001 Acta Phys.Sin. 50 1359 (in Chinese)[胡立发、周 廉、张平祥 2001 50 1359]
[13] He G L, He Y W, Zhao Z G, Liu M 2006 Acta Phys.Sin. 55 839 (in Chinese) [何国良、贺延文、赵志刚、刘 楣 2006 55 839]
[14] Liu M X 2011 Acta Phys.Sin. 60 017401(in Chinese) [刘敏霞2011 60 017401]
[15] Carles N, Alvaro S 2001 Phys.Rev.B 64 214507
[16] Zhang F Y, Huang S L, Cao X W 1989 Acta Phys.Sin. 38 830 (in Chinese)[张凤英、黄孙利、曹效文 1989 38 830]
[17] Nuria D V, Alvaro S, Enric P 2007 Appl. Phys.Lett. 90 042503
[18] Alvaro S, Carles N 2001 Phys.Rev.B 64 214506
[19] Wang F, Sun G Q, Kong X M 2001 Acta Phys.Sin. 50 1590 (in Chinese)[王 峰、孙国庆、孔祥木 2001 50 1590]
[20] Yang W M, Zhu S H, Wu X L 2009 Cryogenics 49 299
[21] Ren Z Y, Oliver de Hass, Wang X R 2003 Chin. J. Low Temp. Phys.25(suppl)182 [任仲友、Oliver de Hass、王晓融 2003 低温 25(增)182]
[22] Yang W M, Zhou L, Feng Y 2002 Brazilian Journal of Physics 32 763
[23] Yang W M, Zhou L, Feng Y 2001 Physics C 354 5
[24] Zhang X Y, Zhou J, Zhou Y H 2009 Supercond Sci Tech. 22 1
[25] Deng Z, Zheng J, Song H 2007 IEEE Trans. Appl. Supercond. 17 2071
[26] He Q Y, Wang J S, Wang S Y 2009 Physica C 469 91
[27] Tsuda M, Kawasaki T, Yagai T 2008 J. Phys. 97 1
[28] Cheng X F, Yang W M, Li G Z 2010 Chin. J. Low Temp. Phys. 32 150 [程晓芳、杨万民、李国政2010低温 32 150]
[29] Yang W M, Chao X X, Shu Z B 2006 Physica C 445—448 347
-
[1] John R H, Shaul H,Tomotake M 2005 Supercond Sci. Tech. 18 S1
[2] Werfel F N, Floegel-Delor U,Rothfeld R 2005 Supercond Sci. Tech. 18 S19
[3] Miyagawa Y, Kameno H, Takahata R 1999 IEEE Trans. Appl. Supercond. 9 996
[4] Ohashi S, Tamura S, Hirane Y 1999 IEEE Trans. Appl. Supercond. 9 988
[5] Nuria D V, Alvaro S, Carles N 2008 Appl.Phys.Lett. 92 042505
[6] Wang J S, Wang S Y 2002 Physica C 378—381 809
[7] Sha J J, Yao Z W 2000 Acta Phys.Sin. 49 1356 (in Chinese)[沙建军、姚仲文 2000 49 1356]
[8] Feng Y, Zhou L,Yang W M, Zhang C P 2000 Acta Phys.Sin. 49 146 (in Chinese) [冯 勇、周 廉、杨万民、张翠萍 2000 49 146]
[9] Li G Z,Yang W M 2010 Acta Phys.Sin.59 5028(in Chinese) [李国政、杨万民 2010 59 5028]
[10] Yang W M, Zhou L, Feng Y 1999 Chin. Phys. 8 533
[11] Zhu M, Ren Z Y, Wang S Y 2002 Chin. J. Low Temp. Phys. 24 213[朱 敏、任仲友、王素玉 2002 低温 24 213]
[12] Hu L F, Zhou L, Zhang P X 2001 Acta Phys.Sin. 50 1359 (in Chinese)[胡立发、周 廉、张平祥 2001 50 1359]
[13] He G L, He Y W, Zhao Z G, Liu M 2006 Acta Phys.Sin. 55 839 (in Chinese) [何国良、贺延文、赵志刚、刘 楣 2006 55 839]
[14] Liu M X 2011 Acta Phys.Sin. 60 017401(in Chinese) [刘敏霞2011 60 017401]
[15] Carles N, Alvaro S 2001 Phys.Rev.B 64 214507
[16] Zhang F Y, Huang S L, Cao X W 1989 Acta Phys.Sin. 38 830 (in Chinese)[张凤英、黄孙利、曹效文 1989 38 830]
[17] Nuria D V, Alvaro S, Enric P 2007 Appl. Phys.Lett. 90 042503
[18] Alvaro S, Carles N 2001 Phys.Rev.B 64 214506
[19] Wang F, Sun G Q, Kong X M 2001 Acta Phys.Sin. 50 1590 (in Chinese)[王 峰、孙国庆、孔祥木 2001 50 1590]
[20] Yang W M, Zhu S H, Wu X L 2009 Cryogenics 49 299
[21] Ren Z Y, Oliver de Hass, Wang X R 2003 Chin. J. Low Temp. Phys.25(suppl)182 [任仲友、Oliver de Hass、王晓融 2003 低温 25(增)182]
[22] Yang W M, Zhou L, Feng Y 2002 Brazilian Journal of Physics 32 763
[23] Yang W M, Zhou L, Feng Y 2001 Physics C 354 5
[24] Zhang X Y, Zhou J, Zhou Y H 2009 Supercond Sci Tech. 22 1
[25] Deng Z, Zheng J, Song H 2007 IEEE Trans. Appl. Supercond. 17 2071
[26] He Q Y, Wang J S, Wang S Y 2009 Physica C 469 91
[27] Tsuda M, Kawasaki T, Yagai T 2008 J. Phys. 97 1
[28] Cheng X F, Yang W M, Li G Z 2010 Chin. J. Low Temp. Phys. 32 150 [程晓芳、杨万民、李国政2010低温 32 150]
[29] Yang W M, Chao X X, Shu Z B 2006 Physica C 445—448 347
Catalog
Metrics
- Abstract views: 8551
- PDF Downloads: 767
- Cited By: 0