搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横向静磁场对电磁悬浮液滴稳定性的影响

宋其晖 石万元

引用本文:
Citation:

横向静磁场对电磁悬浮液滴稳定性的影响

宋其晖, 石万元

Influence of horizontal static magnetic field on the stability of electromagnetic levitated Cu molten droplet

Song Qi-Hui, Shi Wan-Yuan
PDF
导出引用
  • 在利用电磁悬浮技术实现液滴悬浮的过程中, 液滴内部往往存在剧烈对流、外部伴随快速旋转和质心的水平位移等不稳定因素; 因此, 实现液滴的稳定悬浮是完善电磁悬浮技术的关键. 本文采用实验观测的方法, 通过U形静磁场组件对液滴所在空间施加横向静磁场, 利用高速相机记录了不同磁场强度下纯铜熔融液滴的振荡变形过程; 分析了横向静磁场对悬浮铜液滴振荡频率、振幅以及旋转的影响. 实验发现: 对于熔融前的固态铜颗粒, 若静磁场强度超过0.3 T, 铜颗粒几乎以静止状态悬浮. 熔融后, 当施加0.15 T的静磁场, 与未加静磁场时相比, 液滴拟合出的椭圆轮廓线半长短轴差R-=Rx-Ry, 椭圆面积A和椭圆长轴长度Dmax, R-的振幅分别减小了25%, 76% 和60%; 随着磁场强度的继续增加, 振幅和频率继续减小, 但在静磁场强度为0.3 T时, 相比静磁场强度为0.2 T, 频率增加了1 Hz. 横向静磁场还抑制了悬浮铜液滴的旋转, 当磁场强度增加到0.53 T时, 悬浮液滴只在10°的角度范围内摆动. 这些结果表明, 施加横向静磁场能够有效提高悬浮液滴的稳定性.
    For an electromagnetically levitated (EML) molten droplet, there usually exist some unstable factors, such as internal fluid convection, quick spin and horizontal displacement and so on. As a result, stabilizing the droplet is very important for EML technology. In this paper, a horizontal static magnetic field is imposed on an EML Cu droplet through a U-shaped static magnetic component. The shape oscillation of a Cu droplet is recorded continuously under different magnetic field intensities using a high speed camera. The effects of static magnetic field on the oscillation frequency, amplitude and spin angle of the droplet are analyzed from the recorded data of droplet shape. The result shows that when the strength of the static magnetic field exceeds 0.3 T the solid Cu is levitated statically without any spin and horizontal movement. For molten Cu droplet, its amplitudes of the R-, A and Dmax are reduced by 25%, 76% and 60% respectively when a static magnetic field with 0.15 T is imposed. With the increase of magnetic field strength the amplitude and frequency of oscillation decease continuously. However, when the intensity of the static magnetic field is 0.3 T, its frequency is 1 Hz higher than that when the intensity of the static magnetic field is 0.2 T. Finally, the result indicates that the horizontal static magnetic field can inhibit the spin of the levitated droplets. For instance, when the strength of the magnetic field is 0.53 T the droplet spins are within a very narrow angle of 10°, which is quite smaller than in the case without static magnetic field. These results exhibit that the imposed horizontal static magnetic field can effectively improve the stability of electromagnetic levitated droplet.
    • 基金项目: 国家自然科学基金(批准号: 51176210)和重庆市自然科学基金(批准号: cstc2012jjA50003)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51176210) and the Natural Science Foundation of Chongqing, China (Grant No. cstc2012jjA50003).
    [1]

    Chang F E, Jian Z Y 2005 Foundry Technol. 26 918 (in Chinese) [常芳娥, 坚曾运 2005 铸造技术 26 918]

    [2]

    Wang Y Q, Li L, Zhou J X, Li X J, Wang H Z 2008 Metallurg. Anal. 28 16 (in Chinese) [王永清, 李雷, 周金香, 李小佳, 王海舟 2008 冶金分析 28 16]

    [3]

    Ozawa S, Koda T, Adachi M, Morohoshi M, Watanabe M, Hibiya T 2009 J. Appl. Phys. 106 034907

    [4]

    Wei B B, Yang G C 1988 Acta Aeronaut. Astron. Sin. 9 589 (in Chinese) [魏炳波, 杨根仓 1988 航空学报 9 589]

    [5]

    Li G, Gao Y P, Sun Y N, Chi Z H, Liu R P 2008 Chin. Phys. B 17 3412

    [6]

    Wang H P, Cao C D, Wei B 2004 Appl. Phys. Lett. 84 4062

    [7]

    Liu X M, Liu G Q, Li D P, Wang H B, Song X Y 2014 Acta Phys. Sin. 63 098102 (in Chinese) [刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳 2014 63 098102]

    [8]

    Zhang L B, Dai F P, Xiong Y Y, Wei B B 2006 Acta Phys. Sin. 55 419 (in Chinese) [张蜡宝, 代富平, 熊予莹, 魏炳波 2006 55 419]

    [9]

    Royer Z L, Tackes C, LeSar R, Napolitano R E 2013 J. Appl. Phys. 113 214901

    [10]

    Zhong X Y, Chen J G 1996 Physics 25 565 (in Chinese) [钟晓燕, 陈佳圭 1996 物理 25 565]

    [11]

    Bojarevics V, Pericleous K 2003 ISIJ Int. 43 890

    [12]

    Hyers R W 2005 Meas. Sci. Technol. 16 394

    [13]

    Rayleigh L 1879 Proc. R. Soc. London 29 71

    [14]

    Cummings D L, Blackburn D A 1991 J. Fluid Mech. 224 395

    [15]

    Ozawa S, Morohoshi K, Hibiya T, Fukuyama H 2010 J. Appl. Phys. 107 014910

    [16]

    Bullard C, Hyers R W, Abedian B 2005 IEEE Trans. Magn. 41 2230

    [17]

    Egry I, Giffard H, Schneider S 2005 Meas. Sci. Technol. 16 426

    [18]

    Essmann U, Kiessiq H 1979 Mat. Res. Bull. 14 1139

    [19]

    Ma W Z, Ji C C, Li J G 2002 Acta Phys. Sin. 51 2233 (in Chinese) [马伟增, 季诚昌, 李建国 2002 51 2233]

    [20]

    Sun M Y, Wan Q, Qin F 1991 Rare Metals 15 61 (in Chinese) [孙茂友, 万群, 秦福 1991 稀有金属 15 61]

    [21]

    Yasuda H, Ohnaka I, Ninomiya Y, Ishii R, Fujita S, Kishio K 2004 J. Crystal Growth 260 475

    [22]

    Sugioka K, Tsukada T, Fukuyama H, Kobatake H, Awaji S 2010 Int. J. Heat Mass Transfer 53 4228

  • [1]

    Chang F E, Jian Z Y 2005 Foundry Technol. 26 918 (in Chinese) [常芳娥, 坚曾运 2005 铸造技术 26 918]

    [2]

    Wang Y Q, Li L, Zhou J X, Li X J, Wang H Z 2008 Metallurg. Anal. 28 16 (in Chinese) [王永清, 李雷, 周金香, 李小佳, 王海舟 2008 冶金分析 28 16]

    [3]

    Ozawa S, Koda T, Adachi M, Morohoshi M, Watanabe M, Hibiya T 2009 J. Appl. Phys. 106 034907

    [4]

    Wei B B, Yang G C 1988 Acta Aeronaut. Astron. Sin. 9 589 (in Chinese) [魏炳波, 杨根仓 1988 航空学报 9 589]

    [5]

    Li G, Gao Y P, Sun Y N, Chi Z H, Liu R P 2008 Chin. Phys. B 17 3412

    [6]

    Wang H P, Cao C D, Wei B 2004 Appl. Phys. Lett. 84 4062

    [7]

    Liu X M, Liu G Q, Li D P, Wang H B, Song X Y 2014 Acta Phys. Sin. 63 098102 (in Chinese) [刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳 2014 63 098102]

    [8]

    Zhang L B, Dai F P, Xiong Y Y, Wei B B 2006 Acta Phys. Sin. 55 419 (in Chinese) [张蜡宝, 代富平, 熊予莹, 魏炳波 2006 55 419]

    [9]

    Royer Z L, Tackes C, LeSar R, Napolitano R E 2013 J. Appl. Phys. 113 214901

    [10]

    Zhong X Y, Chen J G 1996 Physics 25 565 (in Chinese) [钟晓燕, 陈佳圭 1996 物理 25 565]

    [11]

    Bojarevics V, Pericleous K 2003 ISIJ Int. 43 890

    [12]

    Hyers R W 2005 Meas. Sci. Technol. 16 394

    [13]

    Rayleigh L 1879 Proc. R. Soc. London 29 71

    [14]

    Cummings D L, Blackburn D A 1991 J. Fluid Mech. 224 395

    [15]

    Ozawa S, Morohoshi K, Hibiya T, Fukuyama H 2010 J. Appl. Phys. 107 014910

    [16]

    Bullard C, Hyers R W, Abedian B 2005 IEEE Trans. Magn. 41 2230

    [17]

    Egry I, Giffard H, Schneider S 2005 Meas. Sci. Technol. 16 426

    [18]

    Essmann U, Kiessiq H 1979 Mat. Res. Bull. 14 1139

    [19]

    Ma W Z, Ji C C, Li J G 2002 Acta Phys. Sin. 51 2233 (in Chinese) [马伟增, 季诚昌, 李建国 2002 51 2233]

    [20]

    Sun M Y, Wan Q, Qin F 1991 Rare Metals 15 61 (in Chinese) [孙茂友, 万群, 秦福 1991 稀有金属 15 61]

    [21]

    Yasuda H, Ohnaka I, Ninomiya Y, Ishii R, Fujita S, Kishio K 2004 J. Crystal Growth 260 475

    [22]

    Sugioka K, Tsukada T, Fukuyama H, Kobatake H, Awaji S 2010 Int. J. Heat Mass Transfer 53 4228

  • [1] 徐山森, 常健, 翟斌, 朱先念, 魏炳波. 液态五元Zr57Cu20Al10Ni8Ti5合金的微观结构演变与非晶形成机制.  , 2023, 72(22): 226401. doi: 10.7498/aps.72.20231169
    [2] 徐山森, 常健, 吴宇昊, 沙莎, 魏炳波. 液态五元Ni-Zr-Ti-Al-Cu合金快速凝固过程的高速摄影研究.  , 2019, 68(19): 196401. doi: 10.7498/aps.68.20190910
    [3] 郭成豹, 殷琦琦. 舰船磁场磁单极子阵列法建模技术.  , 2019, 68(11): 114101. doi: 10.7498/aps.68.20190201
    [4] 汪芃, 李倩昀, 唐国宁. Hindmarsh-Rose神经元阵列自发产生螺旋波的研究.  , 2018, 67(3): 030502. doi: 10.7498/aps.67.20172140
    [5] 林茂杰, 常健, 吴宇昊, 徐山森, 魏炳波. 电磁悬浮条件下液态Fe50Cu50合金的对流和凝固规律研究.  , 2017, 66(13): 136401. doi: 10.7498/aps.66.136401
    [6] 乔晓粉, 李晓莉, 刘赫男, 石薇, 刘雪璐, 吴江滨, 谭平恒. 悬浮二维晶体材料反射光谱和光致发光光谱的周期性振荡现象.  , 2016, 65(13): 136801. doi: 10.7498/aps.65.136801
    [7] 曾果, 李兴源, 刘天琪, 赵睿. 同时抑制低频振荡和次同步振荡的多通道广域自适应阻尼控制.  , 2014, 63(22): 228801. doi: 10.7498/aps.63.228801
    [8] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比.  , 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [9] 邵学鹏, 解文军. 声悬浮条件下黏性液滴的扇谐振荡规律研究.  , 2012, 61(13): 134302. doi: 10.7498/aps.61.134302
    [10] 鄢振麟, 解文军, 沈昌乐, 魏炳波. 声悬浮液滴的表面毛细波及八阶扇谐振荡.  , 2011, 60(6): 064302. doi: 10.7498/aps.60.064302
    [11] 王金平, 许建平, 徐杨军. 恒定导通时间控制buck变换器多开关周期振荡现象分析.  , 2011, 60(5): 058401. doi: 10.7498/aps.60.058401
    [12] 杨先清, 刘甫, 贾燕, 邓敏, 郭海萍, 唐刚. 垂直振动颗粒混合气体的振荡现象研究.  , 2010, 59(2): 1116-1122. doi: 10.7498/aps.59.1116
    [13] 陈乐, 王海鹏, 魏炳波. 液态三元Ni-Cu-Fe合金比热的实验与计算研究.  , 2009, 58(1): 384-389. doi: 10.7498/aps.58.384
    [14] 杨 军, 武文远, 龚艳春. 磁性隧道结中的量子相干输运研究.  , 2008, 57(1): 448-452. doi: 10.7498/aps.57.448
    [15] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟.  , 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [16] 许光明, 郑佳伟, 刘 勇, 崔建忠. 电磁场作用下溶质元素在镁合金AZ61的分布.  , 2007, 56(7): 4247-4251. doi: 10.7498/aps.56.4247
    [17] 张蜡宝, 代富平, 熊予莹, 魏炳波. 深过冷Ni-15%Sn合金熔体表面张力研究.  , 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
    [18] 包卫平, 许光明, 班春燕, 崔建忠. 静磁场对镁合金凝固组织的影响.  , 2004, 53(6): 2024-2028. doi: 10.7498/aps.53.2024
    [19] 马伟增, 季诚昌, 李建国. 直流磁场控制电磁悬浮熔炼旋转稳定性的理论分析.  , 2002, 51(10): 2233-2238. doi: 10.7498/aps.51.2233
    [20] 屈卫星, 余玮, 张文琦, 徐至展. 电磁波与电离波面相互作用过程中的静磁场模和振荡电场.  , 1997, 46(4): 661-665. doi: 10.7498/aps.46.661
计量
  • 文章访问数:  6481
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-22
  • 修回日期:  2014-08-14
  • 刊出日期:  2014-12-05

/

返回文章
返回
Baidu
map