-
在利用电磁悬浮技术实现液滴悬浮的过程中, 液滴内部往往存在剧烈对流、外部伴随快速旋转和质心的水平位移等不稳定因素; 因此, 实现液滴的稳定悬浮是完善电磁悬浮技术的关键. 本文采用实验观测的方法, 通过U形静磁场组件对液滴所在空间施加横向静磁场, 利用高速相机记录了不同磁场强度下纯铜熔融液滴的振荡变形过程; 分析了横向静磁场对悬浮铜液滴振荡频率、振幅以及旋转的影响. 实验发现: 对于熔融前的固态铜颗粒, 若静磁场强度超过0.3 T, 铜颗粒几乎以静止状态悬浮. 熔融后, 当施加0.15 T的静磁场, 与未加静磁场时相比, 液滴拟合出的椭圆轮廓线半长短轴差R-=Rx-Ry, 椭圆面积A和椭圆长轴长度Dmax, R-的振幅分别减小了25%, 76% 和60%; 随着磁场强度的继续增加, 振幅和频率继续减小, 但在静磁场强度为0.3 T时, 相比静磁场强度为0.2 T, 频率增加了1 Hz. 横向静磁场还抑制了悬浮铜液滴的旋转, 当磁场强度增加到0.53 T时, 悬浮液滴只在10°的角度范围内摆动. 这些结果表明, 施加横向静磁场能够有效提高悬浮液滴的稳定性.For an electromagnetically levitated (EML) molten droplet, there usually exist some unstable factors, such as internal fluid convection, quick spin and horizontal displacement and so on. As a result, stabilizing the droplet is very important for EML technology. In this paper, a horizontal static magnetic field is imposed on an EML Cu droplet through a U-shaped static magnetic component. The shape oscillation of a Cu droplet is recorded continuously under different magnetic field intensities using a high speed camera. The effects of static magnetic field on the oscillation frequency, amplitude and spin angle of the droplet are analyzed from the recorded data of droplet shape. The result shows that when the strength of the static magnetic field exceeds 0.3 T the solid Cu is levitated statically without any spin and horizontal movement. For molten Cu droplet, its amplitudes of the R-, A and Dmax are reduced by 25%, 76% and 60% respectively when a static magnetic field with 0.15 T is imposed. With the increase of magnetic field strength the amplitude and frequency of oscillation decease continuously. However, when the intensity of the static magnetic field is 0.3 T, its frequency is 1 Hz higher than that when the intensity of the static magnetic field is 0.2 T. Finally, the result indicates that the horizontal static magnetic field can inhibit the spin of the levitated droplets. For instance, when the strength of the magnetic field is 0.53 T the droplet spins are within a very narrow angle of 10°, which is quite smaller than in the case without static magnetic field. These results exhibit that the imposed horizontal static magnetic field can effectively improve the stability of electromagnetic levitated droplet.
-
Keywords:
- electromagnetic levitation /
- static magnetic field /
- Cu droplet /
- oscillation
[1] Chang F E, Jian Z Y 2005 Foundry Technol. 26 918 (in Chinese) [常芳娥, 坚曾运 2005 铸造技术 26 918]
[2] Wang Y Q, Li L, Zhou J X, Li X J, Wang H Z 2008 Metallurg. Anal. 28 16 (in Chinese) [王永清, 李雷, 周金香, 李小佳, 王海舟 2008 冶金分析 28 16]
[3] Ozawa S, Koda T, Adachi M, Morohoshi M, Watanabe M, Hibiya T 2009 J. Appl. Phys. 106 034907
[4] Wei B B, Yang G C 1988 Acta Aeronaut. Astron. Sin. 9 589 (in Chinese) [魏炳波, 杨根仓 1988 航空学报 9 589]
[5] Li G, Gao Y P, Sun Y N, Chi Z H, Liu R P 2008 Chin. Phys. B 17 3412
[6] Wang H P, Cao C D, Wei B 2004 Appl. Phys. Lett. 84 4062
[7] Liu X M, Liu G Q, Li D P, Wang H B, Song X Y 2014 Acta Phys. Sin. 63 098102 (in Chinese) [刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳 2014 63 098102]
[8] Zhang L B, Dai F P, Xiong Y Y, Wei B B 2006 Acta Phys. Sin. 55 419 (in Chinese) [张蜡宝, 代富平, 熊予莹, 魏炳波 2006 55 419]
[9] Royer Z L, Tackes C, LeSar R, Napolitano R E 2013 J. Appl. Phys. 113 214901
[10] Zhong X Y, Chen J G 1996 Physics 25 565 (in Chinese) [钟晓燕, 陈佳圭 1996 物理 25 565]
[11] Bojarevics V, Pericleous K 2003 ISIJ Int. 43 890
[12] Hyers R W 2005 Meas. Sci. Technol. 16 394
[13] Rayleigh L 1879 Proc. R. Soc. London 29 71
[14] Cummings D L, Blackburn D A 1991 J. Fluid Mech. 224 395
[15] Ozawa S, Morohoshi K, Hibiya T, Fukuyama H 2010 J. Appl. Phys. 107 014910
[16] Bullard C, Hyers R W, Abedian B 2005 IEEE Trans. Magn. 41 2230
[17] Egry I, Giffard H, Schneider S 2005 Meas. Sci. Technol. 16 426
[18] Essmann U, Kiessiq H 1979 Mat. Res. Bull. 14 1139
[19] Ma W Z, Ji C C, Li J G 2002 Acta Phys. Sin. 51 2233 (in Chinese) [马伟增, 季诚昌, 李建国 2002 51 2233]
[20] Sun M Y, Wan Q, Qin F 1991 Rare Metals 15 61 (in Chinese) [孙茂友, 万群, 秦福 1991 稀有金属 15 61]
[21] Yasuda H, Ohnaka I, Ninomiya Y, Ishii R, Fujita S, Kishio K 2004 J. Crystal Growth 260 475
[22] Sugioka K, Tsukada T, Fukuyama H, Kobatake H, Awaji S 2010 Int. J. Heat Mass Transfer 53 4228
-
[1] Chang F E, Jian Z Y 2005 Foundry Technol. 26 918 (in Chinese) [常芳娥, 坚曾运 2005 铸造技术 26 918]
[2] Wang Y Q, Li L, Zhou J X, Li X J, Wang H Z 2008 Metallurg. Anal. 28 16 (in Chinese) [王永清, 李雷, 周金香, 李小佳, 王海舟 2008 冶金分析 28 16]
[3] Ozawa S, Koda T, Adachi M, Morohoshi M, Watanabe M, Hibiya T 2009 J. Appl. Phys. 106 034907
[4] Wei B B, Yang G C 1988 Acta Aeronaut. Astron. Sin. 9 589 (in Chinese) [魏炳波, 杨根仓 1988 航空学报 9 589]
[5] Li G, Gao Y P, Sun Y N, Chi Z H, Liu R P 2008 Chin. Phys. B 17 3412
[6] Wang H P, Cao C D, Wei B 2004 Appl. Phys. Lett. 84 4062
[7] Liu X M, Liu G Q, Li D P, Wang H B, Song X Y 2014 Acta Phys. Sin. 63 098102 (in Chinese) [刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳 2014 63 098102]
[8] Zhang L B, Dai F P, Xiong Y Y, Wei B B 2006 Acta Phys. Sin. 55 419 (in Chinese) [张蜡宝, 代富平, 熊予莹, 魏炳波 2006 55 419]
[9] Royer Z L, Tackes C, LeSar R, Napolitano R E 2013 J. Appl. Phys. 113 214901
[10] Zhong X Y, Chen J G 1996 Physics 25 565 (in Chinese) [钟晓燕, 陈佳圭 1996 物理 25 565]
[11] Bojarevics V, Pericleous K 2003 ISIJ Int. 43 890
[12] Hyers R W 2005 Meas. Sci. Technol. 16 394
[13] Rayleigh L 1879 Proc. R. Soc. London 29 71
[14] Cummings D L, Blackburn D A 1991 J. Fluid Mech. 224 395
[15] Ozawa S, Morohoshi K, Hibiya T, Fukuyama H 2010 J. Appl. Phys. 107 014910
[16] Bullard C, Hyers R W, Abedian B 2005 IEEE Trans. Magn. 41 2230
[17] Egry I, Giffard H, Schneider S 2005 Meas. Sci. Technol. 16 426
[18] Essmann U, Kiessiq H 1979 Mat. Res. Bull. 14 1139
[19] Ma W Z, Ji C C, Li J G 2002 Acta Phys. Sin. 51 2233 (in Chinese) [马伟增, 季诚昌, 李建国 2002 51 2233]
[20] Sun M Y, Wan Q, Qin F 1991 Rare Metals 15 61 (in Chinese) [孙茂友, 万群, 秦福 1991 稀有金属 15 61]
[21] Yasuda H, Ohnaka I, Ninomiya Y, Ishii R, Fujita S, Kishio K 2004 J. Crystal Growth 260 475
[22] Sugioka K, Tsukada T, Fukuyama H, Kobatake H, Awaji S 2010 Int. J. Heat Mass Transfer 53 4228
计量
- 文章访问数: 6481
- PDF下载量: 184
- 被引次数: 0