Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of nanoparticle size on natural convection patterns of nanofluids with the lattice Boltzmann method

Sui Peng-xiang

Citation:

Effect of nanoparticle size on natural convection patterns of nanofluids with the lattice Boltzmann method

Sui Peng-xiang
PDF
HTML
Get Citation
  • In this work, numerical simulation of natural convection of nanofluids within a square enclosure were investigated by using the non-dimensional lattice Boltzmann method (NDLBM). The effects of key governing parameters Knudsen number ($10^{-6} \leqslant Kn_{{\rm{f}},{\rm{s}}} \leqslant 10^4$), Rayleigh number ($10^3 \leqslant Ra_{{\rm{f}},{\rm{L}}} \leqslant 10^6$), and nanoparticle volume fraction ($10^{-2} \leqslant \phi_{\rm{s}} \leqslant 10^{-1}$) on the heat and mass transfer of nanofluids were discussed. The results show that in the low $Ra_{{\rm{f}},{\rm{L}}}$ conductive dominated regime, the nanoparticle size has little effect on heat transfer, whereas in the high $Ra_{{\rm{f}},{\rm{L}}}$ convective dominated regime, larger nanoparticle sizes significantly enhance flow intensity and heat transfer efficiency. As fixed $Ra_{{\rm{f}},{\rm{L}}}$ and $\phi_{\rm{s}}$, the heat transfer patterns change from conduction to convection dominated regimes with increasing $Kn_{{\rm{f}},{\rm{s}}}$. The influence of nanoparticle volume fraction was also investigated, and in convection dominated regime, the maximum heat transfer efficiency was achieved when $\phi_{\rm{s}} = 8 {\text{%}}$, balancing both thermal conduction and drag fore of nanofluids. Additionally, by analyzing the full maps of mean Nusselt number ($\overline {Nu}_{{\rm{f}},{\rm{L}}}$) and the enhancement ratio related to the base fluid ($Re_{{\rm{n}},{\rm{f}}}$), the maximum values of $\overline {Nu}_{{\rm{f}},{\rm{L}}}$ and $Re_{{\rm{n}},{\rm{f}}}$ occur when the nanoparticle size is $Kn_{{\rm{f}},{\rm{s}}} = 10^{-1}$ for both conductive and convective dominated regimes. To capture the effects of all key governing parameters on $\overline {Nu}_{{\rm{f}},{\rm{L}}}$, a new empirical correlation has been derived from the numerical results, providing deeper insights into how these parameters influence heat transfer performance.
  • 图 1  物理模型和边界条件示意图

    Figure 1.  Sketch of the problem and boundary conditions.

    图 2  不同网格数对平均努塞尔数$ \overline{Nu}_{{{\rm{f}}, {\rm{L}}}} $的影响

    Figure 2.  The influence of different mesh grid on the mean Nusselt number $ \overline{Nu}_{{{\rm{f}}, {\rm{L}}}} $.

    图 3  平均努塞尔数$ \overline{Nu}_{{{\rm{f}}, {\rm{L}}}} $与其他文献数值结果[32,41]对比

    Figure 3.  Comparison of mean Nusset number $ \overline{Nu}_{{{\rm{f}}, {\rm{L}}}} $ obtained by present study and other numerical results[32,41].

    图 4  在固定颗粒体积分数$ \phi_{\rm{s}} = 8 {\text{%}} $, 不同颗粒粒径$ 1 \times 10^{-4} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant 1 \times 10^2 $和瑞利数$ 1 \times 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $下的无量纲速度场流线分布图像 (a) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{3} $; (b) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{4} $; (c) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{5} $; (d) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{6} $

    Figure 4.  Dimensionless streamlines for different nanoparticle size $ 1 \times 10^{-4} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant 1 \times 10^2 $ and Rayleigh number $ 1 \times $$ 10^{3} Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $ with fixed $ \phi_s = 8 {\text{%}} $: (a) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{3} $; (b) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{4} $; (c) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{5} $; (d) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{6} $

    图 5  在固定颗粒体积分数$ \phi_{\rm{s}} = 8 {\text{%}} $, 不同颗粒粒径$ 1 \times 10^{-4} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant 1 \times 10^2 $和瑞利数$ 1 \times 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $下的无量纲温度场等温线分布图像 (a) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{3} $; (b) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{4} $; (c) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{5} $; (d) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{6} $

    Figure 5.  Dimensionless isotherms for different nanoparticle size $ 1 \times 10^{-4} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant 1 \times 10^2 $ and Rayleigh number $ 1 \times $$ 10^{3} Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $ with fixed $ \phi_s = 8 {\text{%}} $: (a) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{3} $; (b) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{4} $; (c) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{5} $; (d) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{6} $

    图 6  不同颗粒体积分数和瑞利数下, 平均努塞尔数$ \overline {Nu}_{{{\rm{f}}, {\rm{L}}}} $与克努森数$ 1 \times 10^{-6} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant 1 \times 10^4 $关系 (a) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^3 $; (b) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^4 $; (c) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^5 $; (d) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^6 $

    Figure 6.  The mean Nusselt number $ \overline {Nu}_{{{\rm{f}}, {\rm{L}}}} $ versus Knudsen number $ 1 \times 10^{-6} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant 1 \times 10^4 $ with different volume fraction and Rayleigh number: (a) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^3 $; (b) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^4 $; (c) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^5 $; (d) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^6 $.

    图 7  不同瑞利数$ 1 \times 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $和固定颗粒体积分数$ \phi_{\rm{s}} = 8{\text{%}} $下, 平均努塞尔数$ \overline {Nu}_{{{\rm{f}}, {\rm{L}}}} $与克努森数关系

    Figure 7.  The mean Nusselt number $ \overline {Nu}_{{{\rm{f}}, {\rm{L}}}} $ versus Knudsen number with different Rayleigh number $ 1 \times 10^{3} \leqslant $$ Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $ and fixed nanoparticle volume fraction $ \phi_{\rm{s}} = 8{\text{%}} $.

    图 8  不同瑞利数$ 1 \times 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $和固定颗粒体积分数$ \phi_{\rm{s}} = 8{\text{%}} $下, 纳米流体相较于基液传热增加率$ Re_{{\rm{n}}, {\rm{f}}} $与克努森数关系

    Figure 8.  The enhancement ratio $ Re_{{\rm{n}}, {\rm{f}}} $ versus Knudsen number with different Rayleigh number $ 1 \times 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant $$ 1 \times 10^6 $ and fixed nanoparticle volume fraction $ \phi_{\rm{s}} = 8{\text{%}} $.

    图 9  不同瑞利数$ 1 \times 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $和固定颗粒粒径$ Kn_{{\rm{f}}, {\rm{s}}} = 10^{-1} $下, 平均努塞尔数$ \overline {Nu}_{{{\rm{f}}, {\rm{L}}}} $与颗粒体积分数关系

    Figure 9.  The mean Nusselt number $ \overline {Nu}_{{{\rm{f}}, {\rm{L}}}} $ versus nanoparticle volume fraction with different Rayleigh number $ 1 \times 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $ and fixed nanoparticle size $ Kn_{{\rm{f}}, {\rm{s}}} = 10^{-1} $.

    图 10  不同瑞利数$ 1 \times 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $和固定颗粒粒径$ Kn_{{\rm{f}}, {\rm{s}}} = 10^{-1} $下, 纳米流体相较于基液传热增加率$ Re_{{\rm{n}}, {\rm{f}}} $与颗粒体积分数关系

    Figure 10.  The enhancement ratio $ Re_{{\rm{n}}, {\rm{f}}} $ versus nanoparticle volume fraction with different Rayleigh number $ 1 \times $$ 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $ and fixed nanoparticle size $ Kn_{{\rm{f}}, {\rm{s}}} = 10^{-1} $.

    图 11  不同克努森数$ 1 \times 10^{-3} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant 1 \times 10^2 $和固定颗粒体积分数$ \phi_{\rm{s}} = 8 {\text{%}} $下, 平均努塞尔数$ \overline {Nu}_{{{\rm{f}}, {\rm{L}}}} $与瑞利数关系

    Figure 11.  The mean Nusselt number $ \overline {Nu}_{{{\rm{f}}, {\rm{L}}}} $ versus Rayleigh number with different Knudsen number $ 1 \times 10^{-3} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant $$ 1 \times 10^2 $ and fixed nanoparticle volume fraction $ \phi_{\rm{s}} = 8 {\text{%}} $.

    图 12  不同克努森数$ 1 \times 10^{-3} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant 1 \times 10^2 $和固定颗粒体积分数$ \phi_{\rm{s}} = 8 {\text{%}} $下, 纳米流体相较于基液传热增加率$ Re_{{\rm{n}}, {\rm{f}}} $与瑞利数关系

    Figure 12.  The enhancement ratio $ Re_{{\rm{n}}, {\rm{f}}} $ versus Rayleigh number with different Knudsen number $ 1 \times 10^{-3} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant $$ 1 \times 10^2 $ and fixed nanoparticle volume fraction $ \phi_{\rm{s}} = 8 {\text{%}} $.

    图 13  全参数范围下平均努塞尔数的对数函数$ \lg (\overline {Nu}_{{{\rm{f}}, {\rm{L}}}}) = $$ l \lg (\dfrac{{{k_{\rm{n}}}}}{{{k_{\rm{f}}}}}\overline {Nu}_{{{\rm{n}}, {\rm{L}}}}) $ (a) 和纳米流体相较基液传热增加率$ Re_{{\rm{n}}, {\rm{f}}} $ (b) 随不同克努森数$ Kn_{{\rm{f}}, {\rm{s}}} $、瑞利数$ Ra_{{{\rm{f}}, {\rm{L}}}} $、颗粒体积分数$ \phi_{\rm{s}} $变化的三维等值面图

    Figure 13.  The three dimensional isosurfaces of logarithmic function of mean Nusselt number $ \lg (\overline {Nu}_{{{\rm{f}}, {\rm{L}}}}) = \lg (\dfrac{{{k_{\rm{n}}}}}{{{k_{\rm{f}}}}}\overline {Nu}_{{{\rm{n}}, {\rm{L}}}}) $ (a) and enhancement ratio $ Re_{{\rm{n}}, {\rm{f}}} $ (b) over the full parameter range as a function of Knudsen number $ Kn_{{\rm{f}}, {\rm{s}}} $, Rayleigh number $ Ra_{{{\rm{f}}, {\rm{L}}}} $, and nanoparticle volume fraction $ \phi_{\rm{s}} $.

    表 1  水和氧化铝纳米颗粒的物性参数[38,39]

    Table 1.  Physical properties of the water and ${{\rm{Al}}_2{\rm{O}}_3}$ nanoparticle[38,39].

    ρ/$\mathrm{kg \cdot m^{-3}}$$c_{p}$/$\mathrm {J \cdot kg^{-1} \cdot K^{-1}}$k/$\mathrm{W \cdot m^{-1} \cdot K^{-1}}$λ/$\mathrm{nm}$
    997.141790.6130.3
    ${{\rm{Al}}_2{\rm{O}}_3}$纳米颗粒39707654035
    DownLoad: CSV
    Baidu
  • [1]

    Wang X, Song Y, Li C, Zhang Y, Ali HM, Sharma S, Li R, Yang M, Gao T, Liu M, Cui X, Said Z, Zhou Z 2024 Int. J. Adv. Manuf. Technol. 131 3113Google Scholar

    [2]

    Sandhya M, Ramasamy D, Sudhakar K, Kadirgama K, Samykano M, Harun WSW, Najafi G, Mofijur M, Mazlan M 2021 Sustain. Energy Technol. Assess. 44 101058

    [3]

    Said Z, Sundar LS, Tiwari AK, Ali HM, Sheikholeslami M, Bellos E, Babar H 2022 Phys. Rep. 946 1Google Scholar

    [4]

    Smaisim GF, Mohammed DB, Abdulhadi AM, Uktamov KF, Alsultany FH, Izzat SE, Ansari MJ, Kzar HH, Al-Gazally ME, Kianfar E 2022 J. Sol-Gel Sci. Technol. 104 1Google Scholar

    [5]

    肖波齐, 范金土, 蒋国平, 陈玲霞 2012 61 317Google Scholar

    Xiao B, Fan J, Jiang G, Chen L 2012 Acta Phys. Sin. 61 317Google Scholar

    [6]

    Azmi WH, Sharma KV, Mamat R, Najafi G, Mohamad MS 2016 Renewable Sustainable Energy Rev. 53 1046Google Scholar

    [7]

    Wang X, Xu X, Choi SUS 1999 J. Thermophys. Heat Transfer 13 474Google Scholar

    [8]

    Das SK, Putra N, Thiesen P, Roetzel W 2003 J. Heat Transfer 125 567Google Scholar

    [9]

    Nguyen CT, Desgranges F, Galanis N, Roy G, Mare T, Boucher S, Minsta HA 2008 Int. J. Therm. Sci. 47 103Google Scholar

    [10]

    Maxwell JC 1982 A Treatise on Electricity and Magnetism (Vol. 2) (London Oxford University Press) pp 173-215

    [11]

    Nan CW, Shi Z, Lin Y 2003 Chem. Phys. Lett. 375 666Google Scholar

    [12]

    Mintsa HA, Roy G, Nguyen CT, Doucet D 2009 Int. J. Therm. Sci. 48 363Google Scholar

    [13]

    Brinkman HC 1952 J. Chem. Phys. 20 571Google Scholar

    [14]

    Batchelor GK 1977 J. Fluid Mech. 83 97Google Scholar

    [15]

    Nguyen CT, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Minsta HA 2007 Int. J. Heat Fluid Flow 28 1492Google Scholar

    [16]

    Majumdar A 1993 J. Heat Transfer 115 7Google Scholar

    [17]

    Mazumder S, Majumdar A 2001 J. Heat Transfer 123 749Google Scholar

    [18]

    Su Y, Davidson JH 2018 Int. J. Heat Mass Transfer 127 303Google Scholar

    [19]

    Chambre PA, Schaaf SA 1961 Flow of Rarefied Gases (Princeton University Press) pp 78-146.

    [20]

    Sui P, Su Y, Sin V, Davidson JH 2022 Int. J. Heat Mass Transfer 187 122541Google Scholar

    [21]

    Zarki A, Ghalambaz M, Chamkha AJ, Ghalambaz M, Rossi DD 2015 Adv. Powder Technol. 26 935Google Scholar

    [22]

    Sabour M, Ghalambaz M, Chamkha A 2017 Int. J. Numer. Methods Heat Fluid Flow 27 1504Google Scholar

    [23]

    Paul TC, Morshed A, Fox EB, Khan JA 2017 Int. J. Heat Mass Transfer 28 753

    [24]

    Liu F, Wang L 2009 Int. J. Heat Mass Transfer 52 5849Google Scholar

    [25]

    Zahmatkesh I, Sheremet M, Yang L, Heris SZ, Sharifpur M, Meyer JP, Ghalambaz M, Wongwises S, Jing D, Mahian O 2021 J. Mol. Liq. 321 114430Google Scholar

    [26]

    Trodi A, Benhamza MEH 2017 Chem. Eng. Commun. 204 158Google Scholar

    [27]

    Sheikhzadeh GA, Aghaei A, Soleimani S 2018 Challenges Nano Micro Scale Sci. Technol. 6 27

    [28]

    Dogonchi AS, Hashemi-Tilehnoee M, Waqas M, Seyyedi SM, Animasaun IL, Ganji DD 2020 Phys. A (Amsterdam, Neth.) 540 123034Google Scholar

    [29]

    Tarokh A, Mohamad A, Jiang L 2013 Numer. Heat Transfer, Part A 63 159Google Scholar

    [30]

    张贝豪, 郑林 2020 69 164401Google Scholar

    Zhang B, Zheng L 2020 Acta Phys. Sin. 69 164401Google Scholar

    [31]

    Su Y, Sui P, Davidson JH 2022 Renew. Energy 184 712Google Scholar

    [32]

    Lai F, Yang Y 2011 Int. J. Therm. Sci. 50 1930Google Scholar

    [33]

    Sheikholeslami M, Gorji-Bandpy M, Domairry G 2013 Appl. Math. Mech. 34 833Google Scholar

    [34]

    齐聪, 何光艳, 李意民, 何玉荣 2015 64 328Google Scholar

    Qi C, He G, Li Y, He Y 2015 Acta Phys. Sin. 64 328Google Scholar

    [35]

    Taher MA, Kim HD, Lee YW 2017 Heat Transfer Res. 48 1025Google Scholar

    [36]

    袁俊杰, 叶欣, 单彦广 2021 计算物理 38 57

    Yuan J, Ye X, Shan Y 2021 Chinese Journal of Computational Physics 38 57

    [37]

    Ganji DD, Malvandi A 2014 Powder Technol. 263 50Google Scholar

    [38]

    Hwang KS, Lee JH, Jang SP 2009 Int. J. Heat Mass Transfer 50 4003

    [39]

    Wang D, Cheng P, Quan X 2019 Int. J. Heat Mass Transfer 130 1358Google Scholar

    [40]

    Hua YC, Cao BY 2016 Int. J. Heat Mass Transfer 92 995Google Scholar

    [41]

    Ho CJ, Chen MW, Li ZW 2008 Int. J. Heat Mass Transfer 51 4506Google Scholar

    [42]

    Li CH, Peterson GP 2007 J. Appl. Phys. 101 044312Google Scholar

    [43]

    Chon CH, Kihm KD, Lee SP 2005 Appl. Phys. Lett. 87 153107Google Scholar

  • [1] Feng Jing-Sen, Min Jing-Chun. Lattice Boltzmann method simulation of two-phase flow in horizontal channel. Acta Physica Sinica, doi: 10.7498/aps.72.20222421
    [2] Lu Wei, Chen Shuo, Yu Zhi-Yuan, Zhao Jia-Yi, Zhang Kai-Xuan. Improvement of natural convection simulation based on energy conservation dissipative particle dynamics. Acta Physica Sinica, doi: 10.7498/aps.72.20230495
    [3] Liu Zhe, Wang Lei-Lei, Shi Peng-Peng, Cui Hai-Hang. Experiments and analytical solutions of light driven flow in nanofluid droplets. Acta Physica Sinica, doi: 10.7498/aps.69.20191508
    [4] Zhang Bei-Hao, Zheng Lin. Numerical simulation of natural convection of nanofluids in an inclined square porous enclosure by lattice Boltzmann method. Acta Physica Sinica, doi: 10.7498/aps.69.20200308
    [5] Zhang Zhi-Qi, Qian Sheng, Wang Rui-Jin, Zhu Ze-Fei. Effect of aggregation morphology of nanoparticles on thermal conductivity of nanofluid. Acta Physica Sinica, doi: 10.7498/aps.68.20181740
    [6] Hu Meng-Dan, Zhang Qing-Yu, Sun Dong-Ke, Zhu Ming-Fang. Three-dimensional lattice Boltzmann modeling of droplet condensation on superhydrophobic nanostructured surfaces. Acta Physica Sinica, doi: 10.7498/aps.68.20181665
    [7] Feng Dai-Li, Feng Yan-Hui, Shi Jun. Lattice Boltzamn model of phonon heat conduction in mesoporous composite material. Acta Physica Sinica, doi: 10.7498/aps.65.244401
    [8] He Yu-Chen, Liu Xiang-Jun. Simulation studies on the transport properties of Cu-H2O nanofluids based on water continuum assumption. Acta Physica Sinica, doi: 10.7498/aps.64.196601
    [9] Huang Xin, Peng Shu-Ming, Zhou Xiao-Song, Yu Ming-Ming, Yin Jian, Wen Cheng-Wei. Numerical simulation of heat transfer and natural convection of the indirect-driven cryogenic target. Acta Physica Sinica, doi: 10.7498/aps.64.215201
    [10] Liu Fei-Fei, Wei Shou-Shui, Wei chang-Zhi, Ren Xiao-Fei. Coupling double-distribution-function thermal lattice Boltzmann method based on the total energy type. Acta Physica Sinica, doi: 10.7498/aps.64.154401
    [11] Qi Cong, He Guang-Yan, Li Yi-Min, He Yu-Rong. Numerical simulation of natural convection of square enclosure filled with Cu/Al2O3-water mixed nanofluid based on lattice Boltzmann method. Acta Physica Sinica, doi: 10.7498/aps.64.024703
    [12] Lei Juan-Mian, Yang Hao, Huang Can. Comparisons among weakly-compressible and incompressible smoothed particle hdrodynamic algorithms for natural convection. Acta Physica Sinica, doi: 10.7498/aps.63.224701
    [13] Chen Hai-Nan, Sun Dong-Ke, Dai Ting, Zhu Ming-Fang. Modeling of the interaction between solidification interface and bubble using the lattice Boltzmann method with large density ratio. Acta Physica Sinica, doi: 10.7498/aps.62.120502
    [14] Sun Dong-Ke, Xiang Nan, Chen Ke, Ni Zhong-Hua. Lattice Boltzmann modeling of particle inertial migration in a curved channel. Acta Physica Sinica, doi: 10.7498/aps.62.024703
    [15] Guo Ya-Li, Xu He-Han, Shen Sheng-Qiang, Wei Lan. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method. Acta Physica Sinica, doi: 10.7498/aps.62.144704
    [16] Xiao Bo-Qi, Fan Jin-Tu, Jiang Guo-Ping, Chen Ling-Xia. Analysis of convection heat transfer mechanism in nanofluids. Acta Physica Sinica, doi: 10.7498/aps.61.154401
    [17] Zhou Feng-Mao, Sun Dong-Ke, Zhu Ming-Fang. Lattice Boltzmann modelling of liquid-liquid phase separation of monotectic alloys. Acta Physica Sinica, doi: 10.7498/aps.59.3394
    [18] Sun Dong-Ke, Zhu Ming-Fang, Yang Chao-Rong, Pan Shi-Yan, Dai Ting. Modelling of dendritic growth in forced and natural convections. Acta Physica Sinica, doi: 10.7498/aps.58.285
    [19] Xie Hua-Qing, Chen Li-Fei. Mechanism of enhanced convective heat transfer coefficient of nanofluids. Acta Physica Sinica, doi: 10.7498/aps.58.2513
    [20] Xie Hua-Qing, Xi Tong-Geng, Wang Jin-Chang. Study on the mechanism of heat conduction in nanofluid medium. Acta Physica Sinica, doi: 10.7498/aps.52.1444
Metrics
  • Abstract views:  240
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Available Online:  28 October 2024

/

返回文章
返回
Baidu
map