搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于弱可压与不可压光滑粒子动力学方法的封闭方腔自然对流数值模拟及算法对比

雷娟棉 杨浩 黄灿

引用本文:
Citation:

基于弱可压与不可压光滑粒子动力学方法的封闭方腔自然对流数值模拟及算法对比

雷娟棉, 杨浩, 黄灿

Comparisons among weakly-compressible and incompressible smoothed particle hdrodynamic algorithms for natural convection

Lei Juan-Mian, Yang Hao, Huang Can
PDF
导出引用
  • 为了对比研究弱可压光滑粒子动力学(WCSPH)方法和不可压光滑粒子动 力学(ISPH)方法在模拟封闭方腔自然对流问题时的特性, 采用粒子位移技术有效地解决了高瑞利数条件下, 拉格朗日型SPH方法模拟封闭方腔自然对流时流体域内的粒子聚集和空穴问题, 将拉格朗日型SPH 方法求解封闭方腔自然对流问题的最高瑞利数提高到了106; 进而通过对比瑞利数分别为104, 105, 106的条件下, 采用拉格朗日型WCSPH、 拉格朗日型ISPH、欧拉型ISPH三种SPH方法模拟得到的封闭方腔速度分布云图、 温度分布云图、壁面努赛尔特数分布曲线和平均努塞尔特数, 分析了三种SPH方法在模拟封闭方腔自然对流时的精度、稳定性和计算效率. 结果表明: 在低瑞利数条件下, 以上三种SPH方法都可以较好地模拟此问题, 在高瑞利数条件下, 欧拉型ISPH方法的模拟结果最为精确; 拉格朗日型WCSPH方法模拟所得结果比拉格朗日型ISPH方法模拟所得结果稍好些.
    Smoothed particle hydrodynamic (SPH) method is used to solve a variety of complex engineering problems. In the literature about SPH, there are two approaches to solving the pressure component of momentum conservation equation, namely incompressible SPH (ISPH) and weakly compressible SPH (WCSPH) methods. In this paper, we present a new comparative study of WCSPH (Lagrange), ISPH (Lagrange) and ISPH (Euler) methods, focusing on heat conduction issue by numerical solutions of natural convection in a square cavity. Temperature distributions, velocity distributions and Nusselt number distributions at different Rayleigh numbers (Ra=104, 105, 106) are provided in the paper. The quantitative comparisons of results show that WCSPH (Lagrange), ISPH (Lagrange) and ISPH (Euler) methods all perform very well at low Rayleigh number. And at high Rayleigh number, SPH (Lagrange) needs shifting particle technology to correct the distribution of particles, ISPH (Euler) performs best because of the motionless particles, WCSPH (Lagrange) performs better than ISPH (Lagrange).
    [1]

    Gingold R A, Monaghan J J 1977 Mon. Not. R. Astron. Soc. 181 375

    [2]

    Lucy L B 1977 Astron. J. 82 1013

    [3]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [4]

    Zhang A M 2008 Chin. Phys. B 17 927

    [5]

    Antoci C, Gallati M, Sibilla S 2007 Comput. Struct. 85 879

    [6]

    Monaghan J J, Huppert H E, Worster M G 2005 J. Comput. Phys. 206 684

    [7]

    Qiu L C 2013 Acta Phys. Sin. 62 124702 (in Chinese) [邱流潮 2013 62 124702]

    [8]

    Monaghan J J, Kocharyan A 1995 Comput. Phys. Commun. 87 225

    [9]

    Shadloo M S, Yildiz M 2011 Int. J. Numer. Meth. Engng. 87 988

    [10]

    Rook R A, Yildiz M, Dost S 2007 J. Numer. Heat Transfer B 51 1

    [11]

    Lei J M, Huang C 2014 Acta Phys. Sin. 63 144702 (in Chinese) [雷娟棉, 黄灿 2014 63 144702]

    [12]

    Zhong C W, Xie J F, Zhuo C S, Xiong S W, Yin D C 2009 Chin. Phys. B 18 4083

    [13]

    Cheng R J, Cheng Y M, Ge H X 2009 Chin. Phys. B 18 4059

    [14]

    Wang J F, Sun F X, Cheng R J 2010 Chin. Phys. B 19 060201

    [15]

    Zhang X, Liu Y, Ma S 2009 Adv. Mech. 39 1 (in Chinese) [张雄, 刘岩, 马上 2009 力学进展 39 1]

    [16]

    Lee E S, Moulinec C, Xu R, Violeau D, Laurence D, Stansbyc P 2008 J. Comput. Phys. 227 8417

    [17]

    Hughes J P, Graham D I 2010 J. Hydraul. Res. 48 105

    [18]

    Shadloo M S, Zainali A, Yildiz M, Suleman A 2012 Int. J. Numer. Meth. Engng. 89 939

    [19]

    Chen Z, Zong Z, Liu M B, Li H T 2013 Int. J. Numer. Meth. Fluids 73 813

    [20]

    Zhou G Z, Ge W 2014 CIESC 65 1145 (in Chinese) [周光正, 葛蔚 2014 化工学报 65 1145]

    [21]

    Li S W, Xiong L F 2007 Ind. Heat. 36 10 (in Chinese) [李世武, 熊莉芳 2007 工业加热 36 10]

    [22]

    Hu J, Huang C, He J D 2014 Trans. Beijing Inst. Technol. 34 237 (in Chinese) [胡俊, 黄灿, 何建东 2014 北京理工大学学报 (自然科学版) 34 237]

    [23]

    Danis M E, Orhan M, Ecder A 2013 Int. J. Comput. Fluid Dyn. 27 15

    [24]

    Xu R, Stansby P, Laurence D 2009 J. Comput. Phys. 228 6703

    [25]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Meshfree Particle Method (Singapore: World Scientific Publishing) pp33–56

    [26]

    Dehnen W, Aly H 2012 Mon. R. Astron. Soc. 425 1068

    [27]

    Cummins S J, Rudman M 1999 J. Comput. Phys. 152 584

    [28]

    van der Vorst H A 1992 SIAM J. Sci. Stat. Comput. 13 631

    [29]

    Sli E, Mayers D F 2003 An Introduction to Numerical Analysis (Cambridge university press) pp 325-329

    [30]

    Monaghan J J 1994 J. Comput. Phys. 110 399

    [31]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654 (in Chinese) [刘谋斌, 常建忠 2010 59 3654]

    [32]

    Shao S, Lo E Y M 2003 Adv. Water Res. 26 7

    [33]

    Fu X J, Qiang H F, Yang Y C 2007 Adv. Mech. 37 375 (in Chinese) [傅学金, 强洪夫, 杨月诚 2007 力学进展 37 375]

    [34]

    Szewc K, Pozorski J, Taniere A 2011 Int. J. Heat Mass Transfer 54 4807

    [35]

    Chaniotis A K, Poulikakos D, Koumoutsakos P 2002 J. Comput. Phys. 182 67

    [36]

    Cleary P W 1998 Appl. Math. Modell. 22 981

    [37]

    Wan D C, Patnaik B S V, Wei G W 2001 Numer. Heat Transfer B: Fundam. 40 199

    [38]

    Wakashima S, Saitoh T S 2004 Int. J. Heat Mass Transfer 47 853

    [39]

    de Vahl Davis G 1983 Int. J. Numer. Meth. Fluids 3 249

  • [1]

    Gingold R A, Monaghan J J 1977 Mon. Not. R. Astron. Soc. 181 375

    [2]

    Lucy L B 1977 Astron. J. 82 1013

    [3]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [4]

    Zhang A M 2008 Chin. Phys. B 17 927

    [5]

    Antoci C, Gallati M, Sibilla S 2007 Comput. Struct. 85 879

    [6]

    Monaghan J J, Huppert H E, Worster M G 2005 J. Comput. Phys. 206 684

    [7]

    Qiu L C 2013 Acta Phys. Sin. 62 124702 (in Chinese) [邱流潮 2013 62 124702]

    [8]

    Monaghan J J, Kocharyan A 1995 Comput. Phys. Commun. 87 225

    [9]

    Shadloo M S, Yildiz M 2011 Int. J. Numer. Meth. Engng. 87 988

    [10]

    Rook R A, Yildiz M, Dost S 2007 J. Numer. Heat Transfer B 51 1

    [11]

    Lei J M, Huang C 2014 Acta Phys. Sin. 63 144702 (in Chinese) [雷娟棉, 黄灿 2014 63 144702]

    [12]

    Zhong C W, Xie J F, Zhuo C S, Xiong S W, Yin D C 2009 Chin. Phys. B 18 4083

    [13]

    Cheng R J, Cheng Y M, Ge H X 2009 Chin. Phys. B 18 4059

    [14]

    Wang J F, Sun F X, Cheng R J 2010 Chin. Phys. B 19 060201

    [15]

    Zhang X, Liu Y, Ma S 2009 Adv. Mech. 39 1 (in Chinese) [张雄, 刘岩, 马上 2009 力学进展 39 1]

    [16]

    Lee E S, Moulinec C, Xu R, Violeau D, Laurence D, Stansbyc P 2008 J. Comput. Phys. 227 8417

    [17]

    Hughes J P, Graham D I 2010 J. Hydraul. Res. 48 105

    [18]

    Shadloo M S, Zainali A, Yildiz M, Suleman A 2012 Int. J. Numer. Meth. Engng. 89 939

    [19]

    Chen Z, Zong Z, Liu M B, Li H T 2013 Int. J. Numer. Meth. Fluids 73 813

    [20]

    Zhou G Z, Ge W 2014 CIESC 65 1145 (in Chinese) [周光正, 葛蔚 2014 化工学报 65 1145]

    [21]

    Li S W, Xiong L F 2007 Ind. Heat. 36 10 (in Chinese) [李世武, 熊莉芳 2007 工业加热 36 10]

    [22]

    Hu J, Huang C, He J D 2014 Trans. Beijing Inst. Technol. 34 237 (in Chinese) [胡俊, 黄灿, 何建东 2014 北京理工大学学报 (自然科学版) 34 237]

    [23]

    Danis M E, Orhan M, Ecder A 2013 Int. J. Comput. Fluid Dyn. 27 15

    [24]

    Xu R, Stansby P, Laurence D 2009 J. Comput. Phys. 228 6703

    [25]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Meshfree Particle Method (Singapore: World Scientific Publishing) pp33–56

    [26]

    Dehnen W, Aly H 2012 Mon. R. Astron. Soc. 425 1068

    [27]

    Cummins S J, Rudman M 1999 J. Comput. Phys. 152 584

    [28]

    van der Vorst H A 1992 SIAM J. Sci. Stat. Comput. 13 631

    [29]

    Sli E, Mayers D F 2003 An Introduction to Numerical Analysis (Cambridge university press) pp 325-329

    [30]

    Monaghan J J 1994 J. Comput. Phys. 110 399

    [31]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654 (in Chinese) [刘谋斌, 常建忠 2010 59 3654]

    [32]

    Shao S, Lo E Y M 2003 Adv. Water Res. 26 7

    [33]

    Fu X J, Qiang H F, Yang Y C 2007 Adv. Mech. 37 375 (in Chinese) [傅学金, 强洪夫, 杨月诚 2007 力学进展 37 375]

    [34]

    Szewc K, Pozorski J, Taniere A 2011 Int. J. Heat Mass Transfer 54 4807

    [35]

    Chaniotis A K, Poulikakos D, Koumoutsakos P 2002 J. Comput. Phys. 182 67

    [36]

    Cleary P W 1998 Appl. Math. Modell. 22 981

    [37]

    Wan D C, Patnaik B S V, Wei G W 2001 Numer. Heat Transfer B: Fundam. 40 199

    [38]

    Wakashima S, Saitoh T S 2004 Int. J. Heat Mass Transfer 47 853

    [39]

    de Vahl Davis G 1983 Int. J. Numer. Meth. Fluids 3 249

  • [1] 隋鹏翔. 颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟研究.  , 2024, 73(23): 1-13. doi: 10.7498/aps.73.20241332
    [2] 许晓阳, 周亚丽, 余鹏. eXtended Pom-Pom黏弹性流体的改进光滑粒子动力学模拟.  , 2023, 72(3): 034701. doi: 10.7498/aps.72.20221922
    [3] 鲁维, 陈硕, 于致远, 赵嘉毅, 张凯旋. 基于能量守恒耗散粒子动力学方法的自然对流模拟改进研究.  , 2023, 72(18): 180203. doi: 10.7498/aps.72.20230495
    [4] 张贝豪, 郑林. 倾斜多孔介质方腔内纳米流体自然对流的格子Boltzmann方法模拟.  , 2020, 69(16): 164401. doi: 10.7498/aps.69.20200308
    [5] 蒋涛, 黄金晶, 陆林广, 任金莲. 非线性薛定谔方程的高阶分裂改进光滑粒子动力学算法.  , 2019, 68(9): 090203. doi: 10.7498/aps.68.20190169
    [6] 蒋涛, 陈振超, 任金莲, 李刚. 基于修正并行光滑粒子动力学方法三维变系数瞬态热传导问题的模拟.  , 2017, 66(13): 130201. doi: 10.7498/aps.66.130201
    [7] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于总能形式的耦合的双分布函数热晶格玻尔兹曼数值方法.  , 2015, 64(15): 154401. doi: 10.7498/aps.64.154401
    [8] 齐聪, 何光艳, 李意民, 何玉荣. 方腔内Cu/Al2O3水混合纳米流体自然对流的格子Boltzmann模拟.  , 2015, 64(2): 024703. doi: 10.7498/aps.64.024703
    [9] 黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟. 黑腔冷冻靶传热与自然对流的数值模拟研究.  , 2015, 64(21): 215201. doi: 10.7498/aps.64.215201
    [10] 刘虎, 强洪夫, 陈福振, 韩亚伟, 范树佳. 一种新型光滑粒子动力学固壁边界施加模型.  , 2015, 64(9): 094701. doi: 10.7498/aps.64.094701
    [11] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟.  , 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [12] 蒋涛, 任金莲, 徐磊, 陆林广. 非等温非牛顿黏性流体流动问题的修正光滑粒子动力学方法模拟.  , 2014, 63(21): 210203. doi: 10.7498/aps.63.210203
    [13] 邱流潮. 基于不可压缩光滑粒子动力学的黏性液滴变形过程仿真.  , 2013, 62(12): 124702. doi: 10.7498/aps.62.124702
    [14] 蒋涛, 陆林广, 陆伟刚. 等直径微液滴碰撞过程的改进光滑粒子动力学模拟.  , 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [15] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟.  , 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [16] 杨秀峰, 刘谋斌. 光滑粒子动力学SPH方法应力不稳定性的一种改进方案.  , 2012, 61(22): 224701. doi: 10.7498/aps.61.224701
    [17] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟.  , 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [18] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟.  , 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [19] 蒋涛, 欧阳洁, 赵晓凯, 任金莲. 黏性液滴变形过程的核梯度修正光滑粒子动力学模拟.  , 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [20] 刘谋斌, 常建忠. 光滑粒子动力学方法中粒子分布与数值稳定性分析.  , 2010, 59(6): 3654-3662. doi: 10.7498/aps.59.3654
计量
  • 文章访问数:  5766
  • PDF下载量:  673
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-09
  • 修回日期:  2014-06-02
  • 刊出日期:  2014-11-05

/

返回文章
返回
Baidu
map