[1] |
Wang Ao, Sheng Yu-Fei, Bao Hua. Recent advances in thermal transport theory of metals. Acta Physica Sinica,
2024, 73(3): 037201.
doi: 10.7498/aps.73.20231151
|
[2] |
Sui Peng-xiang. Effect of nanoparticle size on natural convection patterns of nanofluids with the lattice Boltzmann method. Acta Physica Sinica,
2024, 73(23): 1-13.
doi: 10.7498/aps.73.20241332
|
[3] |
Qiu Yu-Jun, Li Heng-Xuan, Li Ya-Tao, Huang Chun-Pu, Li Wei-Hua, Zhang Xu-Tao, Liu Ying-Guang. Nanodot embedding based optimization of interfacial thermal conductance. Acta Physica Sinica,
2023, 72(11): 113102.
doi: 10.7498/aps.72.20230314
|
[4] |
Liu Zhe, Wang Lei-Lei, Shi Peng-Peng, Cui Hai-Hang. Experiments and analytical solutions of light driven flow in nanofluid droplets. Acta Physica Sinica,
2020, 69(6): 064701.
doi: 10.7498/aps.69.20191508
|
[5] |
Zhang Bei-Hao, Zheng Lin. Numerical simulation of natural convection of nanofluids in an inclined square porous enclosure by lattice Boltzmann method. Acta Physica Sinica,
2020, 69(16): 164401.
doi: 10.7498/aps.69.20200308
|
[6] |
Zhang Zhi-Qi, Qian Sheng, Wang Rui-Jin, Zhu Ze-Fei. Effect of aggregation morphology of nanoparticles on thermal conductivity of nanofluid. Acta Physica Sinica,
2019, 68(5): 054401.
doi: 10.7498/aps.68.20181740
|
[7] |
Lan Sheng, Li Kun, Gao Xin-Yun. Based on the molecular dynamics characteristic research of heat conduction of graphyne nanoribbons with vacancy defects. Acta Physica Sinica,
2017, 66(13): 136801.
doi: 10.7498/aps.66.136801
|
[8] |
Li Man, Dai Zhi-Gao, Ying Jian-Jian, Xiao Xiang-Heng, Yue Ya-Nan. Thermal characterization of carbon nanotube fibers based on steady-state electro-Raman-thermal technique. Acta Physica Sinica,
2015, 64(12): 126501.
doi: 10.7498/aps.64.126501
|
[9] |
He Yu-Chen, Liu Xiang-Jun. Simulation studies on the transport properties of Cu-H2O nanofluids based on water continuum assumption. Acta Physica Sinica,
2015, 64(19): 196601.
doi: 10.7498/aps.64.196601
|
[10] |
Hua Yu-Chao, Dong Yuan, Cao Bing-Yang. Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nanofilm. Acta Physica Sinica,
2013, 62(24): 244401.
doi: 10.7498/aps.62.244401
|
[11] |
Guo Ya-Li, Xu He-Han, Shen Sheng-Qiang, Wei Lan. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method. Acta Physica Sinica,
2013, 62(14): 144704.
doi: 10.7498/aps.62.144704
|
[12] |
Tang Jing-Jing, Feng Yan-Hui, Li Wei, Cui Liu, Zhang Xin-Xin. Thermal conductivity of carbon nanotube cable type composite. Acta Physica Sinica,
2013, 62(22): 226102.
doi: 10.7498/aps.62.226102
|
[13] |
Xiao Bo-Qi, Fan Jin-Tu, Jiang Guo-Ping, Chen Ling-Xia. Analysis of convection heat transfer mechanism in nanofluids. Acta Physica Sinica,
2012, 61(15): 154401.
doi: 10.7498/aps.61.154401
|
[14] |
Zhao Sheng, Yin Jian-Bo, Zhao Xiao-Peng. Tunable optical properties of Au nanofluids under electric field. Acta Physica Sinica,
2010, 59(5): 3302-3308.
doi: 10.7498/aps.59.3302
|
[15] |
Wu Zhao-Chun. Variational principle and its boundary and additional boundary conditions for inverse shape design problem of heat conduction. Acta Physica Sinica,
2010, 59(9): 6326-6330.
doi: 10.7498/aps.59.6326
|
[16] |
Xie Hua-Qing, Chen Li-Fei. Mechanism of enhanced convective heat transfer coefficient of nanofluids. Acta Physica Sinica,
2009, 58(4): 2513-2517.
doi: 10.7498/aps.58.2513
|
[17] |
Wang Zhao-Liang, Liang Jin-Guo, Tang Da-Wei, Y. T. Zhu. Experimental and theoretical study of the length-dependent thermal conductivity of individual single-walled carbon nanotubes. Acta Physica Sinica,
2008, 57(6): 3391-3396.
doi: 10.7498/aps.57.3391
|
[18] |
Wang Zhao-Liang, Tang Da-Wei, Jia Tao, Mao An-Min. Analytical solution for temperature oscillation in the heater/thermometer film in 3ω method and its application to thermal conductivity measurement of micro/nanometer-films. Acta Physica Sinica,
2007, 56(2): 747-754.
doi: 10.7498/aps.56.747
|
[19] |
Wang Pei-Ji, Zhou Zhong-Xiang, Su Yan, Rong Zhen-Yu, Zhao Peng, Zhang Feng-Jun. Influence of tantalum doping on the thermal conduction of BaTiO3 materials. Acta Physica Sinica,
2006, 55(4): 1959-1964.
doi: 10.7498/aps.55.1959
|
[20] |
GU CHANG-ZHI, JIN ZENG-SUN, Lü XIAN-YI, ZOU GUANG-TIAN, ZHANG JI-FA, FANG RONG-CHUAN. STUDY OF THE DIAMOND FILMS WITH HIGH THERMAL CONDUCTIVITY. Acta Physica Sinica,
1997, 46(10): 1984-1989.
doi: 10.7498/aps.46.1984
|