搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米流体对流换热机理分析

肖波齐 范金土 蒋国平 陈玲霞

引用本文:
Citation:

纳米流体对流换热机理分析

肖波齐, 范金土, 蒋国平, 陈玲霞

Analysis of convection heat transfer mechanism in nanofluids

Xiao Bo-Qi, Fan Jin-Tu, Jiang Guo-Ping, Chen Ling-Xia
PDF
导出引用
  • 考虑在纳米流体中纳米颗粒做布朗运动引起的对流换热, 基于纳米颗粒在纳米流体中遵循分形分布, 本文得到纳米流体对流换热的机理模型. 本解析模型没有增加新的经验常数, 从该模型发现纳米流体池沸腾热流密度是温度、纳米颗粒的平均直径、 纳米颗粒的浓度、纳米颗粒的分形维数、沸腾表面活化穴的分形维数、基本液体的物理特性的函数. 对不同的纳米颗粒浓度和不同的纳米颗粒平均直径与不同的实验数据进行了比较, 模型预测的结果与实验结果相吻合. 所得的解析模型可以更深刻地揭示纳米流体对流换热的物理机理.
    Energy shortage and environment pollution are the major and large problems presently encountered by human all over the world. It is an effective way to save energy and reduce emission of polluted gas by using the nanofluids technology. There has been not a widely recognized theory which can explain flow and heat transfer of nanofluids until now. So the mechanism of flow and heat transfer of nanofluids is not clear. Considering the Brownian motion of nanoparticles in nanofluids, a mechanism model for heat transfer by heat convection is proposed based on the fractal distribution of nanoparticle. No additional/new empirical constant is introduced. The proposed fractal model for heat flux of nanofluids is found to be a function of temperature, average nanoparticle size, concentration, fractal dimension of nanoparticles, fractal dimension of active cavities on boiling surfaces and basic fluid property in pool boiling. The model predictions are compared with the existing experimental data, and fair agreement between the model predictions and experimental data is found for the cases of different nanoparticle concentrations and different average nanoparticle diameters. The analytical model can reveal the physical principles for convection heat transfer in nanofluids.
    • 基金项目: 国家自然科学基金(批准号: 11102100), 福建省自然科学基金(批准号: 2012J01017)和福建省省属高校科研专项基金(批准号: JK2011056)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11102100), the Natural Science Foundation of Fujian Province, China (Grant No. 2012J01017), and the Scientific Research Special Foundation for Provincial University of Education Department of Fujian Province of China (Grant No. JK2011056).
    [1]

    Choi U S in Siginer D A, Wang H P eds. Developments and Applications of non-Newtonian glows ASME FED-231 (New York: [s.n.]) p99

    [2]

    Xuan Y M, Li Q 2000 Int. J. Heat Fluid Flow 21 58

    [3]

    Xie H Q, Xi T G, Wang J C 2003 Acta Phys. Sin. 52 1444 (in Chinese) [谢华清, 奚同庚, 王锦昌 2003 52 1444]

    [4]

    Das S K, Putra N, Roetzel W 2003 Int. J. Heat Mass Transfer 46 851

    [5]

    Jang S P, Choi S U S 2004 Appl. Phys. Letts. 84 4316

    [6]

    Milanova D, Kumar R 2005 Appl. Phys. Lett. 87 233107

    [7]

    Prasher R, Bhattacharya P, Phelan P E 2005 Phys. Rev. Lett. 94 025901

    [8]

    Hong K S, Hong Tae-Keun, Yang Ho-Soon 2006 Appl. Phys. Lett. 88 031901

    [9]

    Liu Z H, Liao L 2008 Int. J. Heat Mass Tran. 51 2593

    [10]

    Trisaksri V, Wongwises S 2009 Int. J. Heat Mass Tran. 52 1582

    [11]

    Xie H Q, Chen L F 2009 Acta Phys. Sin. 58 2513 (in Chinese) [谢华清, 陈立飞 2009 58 2513]

    [12]

    Zhao S, Yin J B, Zhao X P 2010 Acta Phys. Sin. 59 3302 (in Chinese) [赵晟, 尹剑波, 赵晓鹏 2010 59 3302]

    [13]

    Duangthongsuk W, Wongwises S 2010 Int. J. Heat Mass Tran. 53 334

    [14]

    Avramenko A A, Blinov D G, Shevchuk V 2011 Phys. Fluids 23 082002

    [15]

    Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112

    [16]

    Xiao B Q, Yu B M 2007 Int. J. Thermal Sci. 46 426

    [17]

    Xiao B Q, Yu B M 2007 Int. J. Multiphase Flow. 33 1126

    [18]

    Xiao B Q, Wang Z C, Jiang G P, Chen L X, Wei M J, Rao L Z 2009 Acta Phys. Sin. 58 2513 (in Chinese) [肖波齐, 王宗篪, 蒋国平, 陈玲霞, 魏茂金, 饶连周 2009 58 2523]

    [19]

    Wang B X, Zhou L P, Peng X F 2003 Int. J. Heat Mass Tran. 46 2665

    [20]

    Yu B M, Cheng P 2002 Int. J. Heat Mass Tran. 45 2983

    [21]

    Feng Y J, Yu B M, Zou M Q, Zhang D M 2004 J. Phys. D: Appl. Phys. 37 3425

    [22]

    Maxwell J C 1954 A Treatise on Electricity and Magnetism (Cambridge: Oxford University Press) p435

    [23]

    Mikic B B, Rohsenow W M 1969 J. Heat Transfer 91 245

    [24]

    Judd R L, Hwang K S 1976 Int. J. Heat Mass Tran. 98 623

    [25]

    Han C Y, Griffith P 1965 Int. J. Heat Mass Tran. 8 887

    [26]

    Yu B M, Cheng P 2002 AIAA J. Thermophysics and Heat Transfer 16 22

    [27]

    Yu B M, Cheng P 2002 J. Heat Transfer 124 1117

    [28]

    Bang I C, Chang S H 2005 Int. J. Heat Mass Tran. 48 2407

    [29]

    Cai J C, Yu B M, Zou M Q, Luo L 2010 Energy Fuels 24 1860

    [30]

    Cai J C, Yu B M 2010 Fractals 18 417

    [31]

    Cai J C, Yu B M, Zou M Q, Mei M F 2010 Chem. Eng. Sci. 65 5178

    [32]

    Cai J C, Yu B M 2011 Transp. Porous Media 89 251

    [33]

    Jiang G P, Tao W J, Huan S, Xiao B Q 2012 Acta Phys. Sin. 61 070503 (in Chinese) [蒋国平, 陶文俊, 浣石, 肖波齐 2012 61 070503]

  • [1]

    Choi U S in Siginer D A, Wang H P eds. Developments and Applications of non-Newtonian glows ASME FED-231 (New York: [s.n.]) p99

    [2]

    Xuan Y M, Li Q 2000 Int. J. Heat Fluid Flow 21 58

    [3]

    Xie H Q, Xi T G, Wang J C 2003 Acta Phys. Sin. 52 1444 (in Chinese) [谢华清, 奚同庚, 王锦昌 2003 52 1444]

    [4]

    Das S K, Putra N, Roetzel W 2003 Int. J. Heat Mass Transfer 46 851

    [5]

    Jang S P, Choi S U S 2004 Appl. Phys. Letts. 84 4316

    [6]

    Milanova D, Kumar R 2005 Appl. Phys. Lett. 87 233107

    [7]

    Prasher R, Bhattacharya P, Phelan P E 2005 Phys. Rev. Lett. 94 025901

    [8]

    Hong K S, Hong Tae-Keun, Yang Ho-Soon 2006 Appl. Phys. Lett. 88 031901

    [9]

    Liu Z H, Liao L 2008 Int. J. Heat Mass Tran. 51 2593

    [10]

    Trisaksri V, Wongwises S 2009 Int. J. Heat Mass Tran. 52 1582

    [11]

    Xie H Q, Chen L F 2009 Acta Phys. Sin. 58 2513 (in Chinese) [谢华清, 陈立飞 2009 58 2513]

    [12]

    Zhao S, Yin J B, Zhao X P 2010 Acta Phys. Sin. 59 3302 (in Chinese) [赵晟, 尹剑波, 赵晓鹏 2010 59 3302]

    [13]

    Duangthongsuk W, Wongwises S 2010 Int. J. Heat Mass Tran. 53 334

    [14]

    Avramenko A A, Blinov D G, Shevchuk V 2011 Phys. Fluids 23 082002

    [15]

    Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112

    [16]

    Xiao B Q, Yu B M 2007 Int. J. Thermal Sci. 46 426

    [17]

    Xiao B Q, Yu B M 2007 Int. J. Multiphase Flow. 33 1126

    [18]

    Xiao B Q, Wang Z C, Jiang G P, Chen L X, Wei M J, Rao L Z 2009 Acta Phys. Sin. 58 2513 (in Chinese) [肖波齐, 王宗篪, 蒋国平, 陈玲霞, 魏茂金, 饶连周 2009 58 2523]

    [19]

    Wang B X, Zhou L P, Peng X F 2003 Int. J. Heat Mass Tran. 46 2665

    [20]

    Yu B M, Cheng P 2002 Int. J. Heat Mass Tran. 45 2983

    [21]

    Feng Y J, Yu B M, Zou M Q, Zhang D M 2004 J. Phys. D: Appl. Phys. 37 3425

    [22]

    Maxwell J C 1954 A Treatise on Electricity and Magnetism (Cambridge: Oxford University Press) p435

    [23]

    Mikic B B, Rohsenow W M 1969 J. Heat Transfer 91 245

    [24]

    Judd R L, Hwang K S 1976 Int. J. Heat Mass Tran. 98 623

    [25]

    Han C Y, Griffith P 1965 Int. J. Heat Mass Tran. 8 887

    [26]

    Yu B M, Cheng P 2002 AIAA J. Thermophysics and Heat Transfer 16 22

    [27]

    Yu B M, Cheng P 2002 J. Heat Transfer 124 1117

    [28]

    Bang I C, Chang S H 2005 Int. J. Heat Mass Tran. 48 2407

    [29]

    Cai J C, Yu B M, Zou M Q, Luo L 2010 Energy Fuels 24 1860

    [30]

    Cai J C, Yu B M 2010 Fractals 18 417

    [31]

    Cai J C, Yu B M, Zou M Q, Mei M F 2010 Chem. Eng. Sci. 65 5178

    [32]

    Cai J C, Yu B M 2011 Transp. Porous Media 89 251

    [33]

    Jiang G P, Tao W J, Huan S, Xiao B Q 2012 Acta Phys. Sin. 61 070503 (in Chinese) [蒋国平, 陶文俊, 浣石, 肖波齐 2012 61 070503]

  • [1] 隋鹏翔. 颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟研究.  , 2024, 73(23): 1-13. doi: 10.7498/aps.73.20241332
    [2] 赵大帅, 孙志, 孙兴, 孙怀得, 韩柏. 基于分形理论的微间隙空气放电.  , 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [3] 刘哲, 王雷磊, 时朋朋, 崔海航. 纳米流体液滴内的光驱流动实验及其解析解.  , 2020, 69(6): 064701. doi: 10.7498/aps.69.20191508
    [4] 张贝豪, 郑林. 倾斜多孔介质方腔内纳米流体自然对流的格子Boltzmann方法模拟.  , 2020, 69(16): 164401. doi: 10.7498/aps.69.20200308
    [5] 张智奇, 钱胜, 王瑞金, 朱泽飞. 纳米颗粒聚集形态对纳米流体导热系数的影响.  , 2019, 68(5): 054401. doi: 10.7498/aps.68.20181740
    [6] 何昱辰, 刘向军. 基于基液连续假设的大体系Cu-H2O纳米流体输运特性的模拟研究.  , 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [7] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究.  , 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [8] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流.  , 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [9] 行鸿彦, 龚平, 徐伟. 海杂波背景下小目标检测的分形方法.  , 2012, 61(16): 160504. doi: 10.7498/aps.61.160504
    [10] 吴国成, 石祥超. 非光滑热曲线的分数阶次可微性研究.  , 2012, 61(19): 190502. doi: 10.7498/aps.61.190502
    [11] 员美娟, 郑伟, 李云宝, 李钰. 单毛细管中赫切尔-巴尔克莱流体的分形分析.  , 2012, 61(16): 164701. doi: 10.7498/aps.61.164701
    [12] 郑坤灿, 温治, 王占胜, 楼国锋, 刘训良, 武文斐. 前沿领域综述多孔介质强制对流换热研究进展.  , 2012, 61(1): 014401. doi: 10.7498/aps.61.014401
    [13] 杨娟, 卞保民, 彭刚, 李振华. 随机信号双参数脉冲模型的分形特征.  , 2011, 60(1): 010508. doi: 10.7498/aps.60.010508
    [14] 员美娟, 郁伯铭, 郑伟, 袁洁. 多孔介质中卡森流体的分形分析.  , 2011, 60(2): 024703. doi: 10.7498/aps.60.024703
    [15] 张丽, 刘树堂. 薄板热扩散分形生长的环境干扰控制.  , 2010, 59(11): 7708-7712. doi: 10.7498/aps.59.7708
    [16] 赵晟, 尹剑波, 赵晓鹏. 金纳米流体的电场可调光学性质.  , 2010, 59(5): 3302-3308. doi: 10.7498/aps.59.3302
    [17] 谢华清, 陈立飞. 纳米流体对流换热系数增大机理.  , 2009, 58(4): 2513-2517. doi: 10.7498/aps.58.2513
    [18] 李 彤, 商朋见. 多重分形在掌纹识别中的研究.  , 2007, 56(8): 4393-4400. doi: 10.7498/aps.56.4393
    [19] 疏学明, 方 俊, 申世飞, 刘勇进, 袁宏永, 范维澄. 火灾烟雾颗粒凝并分形特性研究.  , 2006, 55(9): 4466-4471. doi: 10.7498/aps.55.4466
    [20] 谢华清, 奚同庚, 王锦昌. 纳米流体介质导热机理初探.  , 2003, 52(6): 1444-1449. doi: 10.7498/aps.52.1444
计量
  • 文章访问数:  8662
  • PDF下载量:  632
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-23
  • 修回日期:  2011-11-28
  • 刊出日期:  2012-08-05

/

返回文章
返回
Baidu
map