Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coupling double-distribution-function thermal lattice Boltzmann method based on the total energy type

Liu Fei-Fei Wei Shou-Shui Wei chang-Zhi Ren Xiao-Fei

Citation:

Coupling double-distribution-function thermal lattice Boltzmann method based on the total energy type

Liu Fei-Fei, Wei Shou-Shui, Wei chang-Zhi, Ren Xiao-Fei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Micro-scale flow is a very important and prominent problem in the design and application of micro-electromechanical systems. With the decrease of the scale, effects, such as viscous dissipation, compression work and boundary slip etc., which are ignored in a large-scale flow, play important roles in a microfluidic system. #br#With its certain advantages such as high numerical efficiency, easy implement, parallel algorithms etc., the lattice Boltzmann method is a powerful numerical technique for simulating fluid flows and modeling the physics in fluids. The double-distribution-function lattice Boltzmann method has been widely used in a micro-scale thermal flow system, since it utilizes two different distribution functions to take account of the viscous dissipation and compression work. However, most of the existing double-distribution-function lattice Boltzmann methods are “decoupling” models, and decoupling will cause the models to be limited to Boussinesq flows in which temperature variation is small. In order to overcome the above problem, based on the low-order Hermite expansion of the continuous equilibrium distribution function, we propose a coupling double-distribution-function thermal lattice Boltzmann method. This method introduces temperature changes into the lattice Boltzmann momentum equation in the form of the momentum source, which can affect the distribution of flow velocity and density, so as to realize the coupling between the momentum field and the energy field. In the process of fluid flow, the temperature change of the energy field includes two parts: one is for different times at the same lattice which can cause the change of the fluid characteristic parameters, such as the viscosity coefficient and the thermal diffusivity; the other is for the same time at different lattices which mainly affects the distribution of the velocity. In the collision and the migration processes, temperature change is introduced into the fluid flow to achieve the effect of temperature changes on the flow field and the coupling between the energy field and the momentum field. This method can break up the limitation of the Boussinesq flows and expand the application scope of the lattice Boltzmann method. #br#Two natural convection models (one takes into consideration the viscous dissipation and compression work, and the other does not) are studied in this paper to verify the effectiveness and accuracy of the coupling double-distribution-function thermal lattice Boltzmann method. Flow field and the changing trend in temperature, velocity and the averaged Nusselt number are analyzed emphatically at different Rayleigh number and Prandtl number. Results of this paper are excellently consistent with those in papers published, confirming the validity and accuracy of this method. Results also show that the convective heat transfer gradually enhances with increasing Rayleigh number and Prandtl number in the cavity, and the boundary layer is obviously formed in the regions very close to the walls; the heat transfer is greatly enhanced if viscous dissipation and compression work are considered; and these effects should not be neglected in the micro-scale flow system.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51075243, 11002083), and the Natural Science Foundation of Shandong Province(Grant Nos. ZR2014EEM003, ZR2014AM031).
    [1]

    Jiang H Y, Ren Y K, Ao H R, Ramos A 2008 Chin. Phys. B 17 4541

    [2]

    Esfahanian V, Dehdashti E, Dehrouye A M 2014 Chin. Phys. B 23 084702

    [3]

    Alexander F J, Chen S, Sterling J D 1993 Phys. Rev. E 47 R2249

    [4]

    Gan Y, Xu A, Zhang G, Li Y 2011 Phys. Rev. E. 83 056704

    [5]

    Chikatamarla S S, Karlin I V 2008 Comput. Phys. Commun. 179 140

    [6]

    Gan Y, Xu A, Zhang G, Yu X, Li Y 2008 Physica A 387 1721

    [7]

    Pierre L, Luo L S 2003 Phys. Rev. E 68 036706

    [8]

    Pierre L, Luo L S 2003 Int. J Mod. Phys. B 17 41

    [9]

    Liu F F, Wei S S, Wei C Z, Ren X F 2014 Acta Phys. Sin. 63 1947041 (in Chinese) [刘飞飞, 魏守水, 魏长智, 任晓飞 2014 63 194704]

    [10]

    Li Q, He Y L, Tang G H, Tao W Q 2009 Phys. Rev. E 80 037702

    [11]

    Chen S, Tölke J, Krafczyk M 2009 Phys. Rev. E 79 016704

    [12]

    He X, Chen S, Doolen G D 1998 J. Comput. Phys. 146 282

    [13]

    Dixit H N, Babu V 2006 Int. J. Heat Mass Trans. 49 727

    [14]

    Wang C H, Yang R 2006 Appl. Math. Comput. 173 1246

    [15]

    Shi Y, Zhao T S, Guo Z L 2006 Comput. Fluids 35 1

    [16]

    Peng Y, Shu C, Chew Y T 2003 Phys. Rev. E 68 143

    [17]

    Li Q, He Y, Wang Y, Tang G 2008 Int. J. Mod. Phys. C 19 125

    [18]

    Guo Z L, Zheng C G, Shi B C, Zhao T S 2007 Phys. Rev. E 75 3654

    [19]

    Mo J Q, Cheng Y 2009 Acta Phys. Sin. 58 4379 (in Chinese) [莫嘉琪, 程燕 2009 58 4379]

    [20]

    Shan X, Yuan X F, Chen H 2006 J. Fluid Mech. 550 413

    [21]

    Hung L H, Yang J Y 2011 Ima J. Appl. Math . 76 774

    [22]

    Li Q, Luo K H, He Y L, Gao Y J, Tao W Q 2012 Phys. Rev. E 85 016710

    [23]

    Basu R, Layek G C 2013 Chin. Phys. B 22 054702

    [24]

    Sun D K, Zhu M F, Yang C R, Pan S Y, Dai T 2009 Acta Phys. Sin. 58 S285 (in Chinese) [孙东科, 朱鸣芳, 杨朝蓉, 潘诗琰, 戴挺 2009 58 S285]

    [25]

    Abdel R G, Khader M M, Megahed A M 2013 Chin. Phys. B 22 030202

    [26]

    Liu F F, Wei S S, Wang S W, Wei C Z, Ren X F 2014 J. Nanoengin. Nanosys. 228 189

    [27]

    Tang G H, Tao W Q, He Y L 2005 Phys. Rev. E 72 6435

    [28]

    Sun L, Sun Y F, Ma D J, Sun D J 2007 Acta Phys. Sin. 56 6503

    [29]

    Costa V A F 2005 Int. J. Heat Mass Tran. 48 2333

    [30]

    Barakos G, Mitsoulis E, Assimacopoulos D 1994 Int. J. Numer. Meth. Fl. 18 695

    [31]

    Cheng T S 2011 Int. J. Therm. Sci. 50 197

    [32]

    Arcidiacono S, Dipiazza I, Ciofalo M 2001 Int. J. Heat Mass Tran. 44 537

    [33]

    Chatterjee D, Biswas G 2011 Numer. Heat Tr. A-Appl. 59 421

    [34]

    MacGregor R, Emery A 1969 J. Heat Tran. 91 391

    [35]

    He Y, Yang W, Tao W 2005 Numer. Heat Tr. A-Appl. 47 917

    [36]

    Pesso T, Piva S 2009 Int. J. Heat Mass Tran. 52 1036

    [37]

    Karimipour A, Nezhad A H, D’Orazio A, Shirani E 2013 J Theor. App. Mech-pol 51 447

    [38]

    Kawamura H, Abe H, Matsuo Y 1999 Int. J. Heat Fluid Fl. 20 196

    [39]

    Dipiazza I, Ciofalo M 2000 Int. J. Heat. Mass Tran. 43 3027

  • [1]

    Jiang H Y, Ren Y K, Ao H R, Ramos A 2008 Chin. Phys. B 17 4541

    [2]

    Esfahanian V, Dehdashti E, Dehrouye A M 2014 Chin. Phys. B 23 084702

    [3]

    Alexander F J, Chen S, Sterling J D 1993 Phys. Rev. E 47 R2249

    [4]

    Gan Y, Xu A, Zhang G, Li Y 2011 Phys. Rev. E. 83 056704

    [5]

    Chikatamarla S S, Karlin I V 2008 Comput. Phys. Commun. 179 140

    [6]

    Gan Y, Xu A, Zhang G, Yu X, Li Y 2008 Physica A 387 1721

    [7]

    Pierre L, Luo L S 2003 Phys. Rev. E 68 036706

    [8]

    Pierre L, Luo L S 2003 Int. J Mod. Phys. B 17 41

    [9]

    Liu F F, Wei S S, Wei C Z, Ren X F 2014 Acta Phys. Sin. 63 1947041 (in Chinese) [刘飞飞, 魏守水, 魏长智, 任晓飞 2014 63 194704]

    [10]

    Li Q, He Y L, Tang G H, Tao W Q 2009 Phys. Rev. E 80 037702

    [11]

    Chen S, Tölke J, Krafczyk M 2009 Phys. Rev. E 79 016704

    [12]

    He X, Chen S, Doolen G D 1998 J. Comput. Phys. 146 282

    [13]

    Dixit H N, Babu V 2006 Int. J. Heat Mass Trans. 49 727

    [14]

    Wang C H, Yang R 2006 Appl. Math. Comput. 173 1246

    [15]

    Shi Y, Zhao T S, Guo Z L 2006 Comput. Fluids 35 1

    [16]

    Peng Y, Shu C, Chew Y T 2003 Phys. Rev. E 68 143

    [17]

    Li Q, He Y, Wang Y, Tang G 2008 Int. J. Mod. Phys. C 19 125

    [18]

    Guo Z L, Zheng C G, Shi B C, Zhao T S 2007 Phys. Rev. E 75 3654

    [19]

    Mo J Q, Cheng Y 2009 Acta Phys. Sin. 58 4379 (in Chinese) [莫嘉琪, 程燕 2009 58 4379]

    [20]

    Shan X, Yuan X F, Chen H 2006 J. Fluid Mech. 550 413

    [21]

    Hung L H, Yang J Y 2011 Ima J. Appl. Math . 76 774

    [22]

    Li Q, Luo K H, He Y L, Gao Y J, Tao W Q 2012 Phys. Rev. E 85 016710

    [23]

    Basu R, Layek G C 2013 Chin. Phys. B 22 054702

    [24]

    Sun D K, Zhu M F, Yang C R, Pan S Y, Dai T 2009 Acta Phys. Sin. 58 S285 (in Chinese) [孙东科, 朱鸣芳, 杨朝蓉, 潘诗琰, 戴挺 2009 58 S285]

    [25]

    Abdel R G, Khader M M, Megahed A M 2013 Chin. Phys. B 22 030202

    [26]

    Liu F F, Wei S S, Wang S W, Wei C Z, Ren X F 2014 J. Nanoengin. Nanosys. 228 189

    [27]

    Tang G H, Tao W Q, He Y L 2005 Phys. Rev. E 72 6435

    [28]

    Sun L, Sun Y F, Ma D J, Sun D J 2007 Acta Phys. Sin. 56 6503

    [29]

    Costa V A F 2005 Int. J. Heat Mass Tran. 48 2333

    [30]

    Barakos G, Mitsoulis E, Assimacopoulos D 1994 Int. J. Numer. Meth. Fl. 18 695

    [31]

    Cheng T S 2011 Int. J. Therm. Sci. 50 197

    [32]

    Arcidiacono S, Dipiazza I, Ciofalo M 2001 Int. J. Heat Mass Tran. 44 537

    [33]

    Chatterjee D, Biswas G 2011 Numer. Heat Tr. A-Appl. 59 421

    [34]

    MacGregor R, Emery A 1969 J. Heat Tran. 91 391

    [35]

    He Y, Yang W, Tao W 2005 Numer. Heat Tr. A-Appl. 47 917

    [36]

    Pesso T, Piva S 2009 Int. J. Heat Mass Tran. 52 1036

    [37]

    Karimipour A, Nezhad A H, D’Orazio A, Shirani E 2013 J Theor. App. Mech-pol 51 447

    [38]

    Kawamura H, Abe H, Matsuo Y 1999 Int. J. Heat Fluid Fl. 20 196

    [39]

    Dipiazza I, Ciofalo M 2000 Int. J. Heat. Mass Tran. 43 3027

  • [1] Sui Peng-xiang. Effect of nanoparticle size on natural convection patterns of nanofluids with the lattice Boltzmann method. Acta Physica Sinica, 2024, 73(23): 1-13. doi: 10.7498/aps.73.20241332
    [2] Lu Wei, Chen Shuo, Yu Zhi-Yuan, Zhao Jia-Yi, Zhang Kai-Xuan. Improvement of natural convection simulation based on energy conservation dissipative particle dynamics. Acta Physica Sinica, 2023, 72(18): 180203. doi: 10.7498/aps.72.20230495
    [3] Zhang Qian-Yi, Wei Hua-Jian, Li Hua-Bing. Multi-segment lymphatic vessel model based on lattice Boltzmann method. Acta Physica Sinica, 2021, 70(21): 210501. doi: 10.7498/aps.70.20210514
    [4] Zhang Bei-Hao, Zheng Lin. Numerical simulation of natural convection of nanofluids in an inclined square porous enclosure by lattice Boltzmann method. Acta Physica Sinica, 2020, 69(16): 164401. doi: 10.7498/aps.69.20200308
    [5] He Zong-Xu, Yan Wei-Wei, Zhang Kai, Yang Xiang-Long, Wei Yi-Kun. Simulation of effect of bottom heat source on natural convective heat transfer characteristics in a porous cavity by lattice Boltzmann method. Acta Physica Sinica, 2017, 66(20): 204402. doi: 10.7498/aps.66.204402
    [6] Jiang Yan-Hua, Chen Jia-Min, Shi Juan, Zhou Jin-Yang, Li Hua-Bing. Triangle wave pulsating flow effect on thrombus simulated by the lattice Boltmann method. Acta Physica Sinica, 2016, 65(7): 074701. doi: 10.7498/aps.65.074701
    [7] Chen Jia-Min, Jiang Yan-Hua, Shi Juan, Zhou Jin-Yang, Li Hua-Bing. Pulsation effect on thrombus in a bifurcation pipe by the lattice Boltzmann method. Acta Physica Sinica, 2015, 64(14): 144701. doi: 10.7498/aps.64.144701
    [8] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal optimization of complex fin with convective heat transfer based on entransy dissipation rate minimization. Acta Physica Sinica, 2015, 64(3): 034701. doi: 10.7498/aps.64.034701
    [9] Qi Cong, He Guang-Yan, Li Yi-Min, He Yu-Rong. Numerical simulation of natural convection of square enclosure filled with Cu/Al2O3-water mixed nanofluid based on lattice Boltzmann method. Acta Physica Sinica, 2015, 64(2): 024703. doi: 10.7498/aps.64.024703
    [10] Huang Xin, Peng Shu-Ming, Zhou Xiao-Song, Yu Ming-Ming, Yin Jian, Wen Cheng-Wei. Numerical simulation of heat transfer and natural convection of the indirect-driven cryogenic target. Acta Physica Sinica, 2015, 64(21): 215201. doi: 10.7498/aps.64.215201
    [11] Shi Juan, Wang Li-Long, Zhou Jin-Yang, Xue Ze, Li Hua-Bing, Wang Jian, Tan Hui-Li. Study on the blood embolism in the bifurcation pipe by the lattice Boltzmann method. Acta Physica Sinica, 2014, 63(1): 014702. doi: 10.7498/aps.63.014702
    [12] Lei Juan-Mian, Yang Hao, Huang Can. Comparisons among weakly-compressible and incompressible smoothed particle hdrodynamic algorithms for natural convection. Acta Physica Sinica, 2014, 63(22): 224701. doi: 10.7498/aps.63.224701
    [13] Xue Ze, Shi Juan, Wang Li-Long, Zhou Jin-Yang, Tan Hui-Li, Li Hua-Bing. The lattice Boltzmann simulation of suspended particle movement in a tapered tube. Acta Physica Sinica, 2013, 62(8): 084702. doi: 10.7498/aps.62.084702
    [14] Shi Juan, Li Hua-Bing, Wang Wen-Xia, Qiu Bing. Lattice Boltzmann simulation of surface hydrophobicity with nano-structure. Acta Physica Sinica, 2010, 59(12): 8371-8376. doi: 10.7498/aps.59.8371
    [15] Shi Juan, Li Jian, Qiu Bing, Li Hua-Bing. Lattice Boltzmann simulation of particles moving in a vortex flow. Acta Physica Sinica, 2009, 58(8): 5174-5178. doi: 10.7498/aps.58.5174
    [16] Sun Dong-Ke, Zhu Ming-Fang, Yang Chao-Rong, Pan Shi-Yan, Dai Ting. Modelling of dendritic growth in forced and natural convections. Acta Physica Sinica, 2009, 58(13): 285-S291. doi: 10.7498/aps.58.285
    [17] Deng Min-Yi, Shi Juan, Li Hua-Bing, Kong Ling-Jiang, Liu Mu-Ren. Lattice Boltzmann method for the production and evolution of spiral waves. Acta Physica Sinica, 2007, 56(4): 2012-2017. doi: 10.7498/aps.56.2012
    [18] Sun Liang, Sun Yi-Feng, Ma Dong-Jun, Sun De-Jun. Power law of horizontal convection at high Rayleigh numbers. Acta Physica Sinica, 2007, 56(11): 6503-6507. doi: 10.7498/aps.56.6503
    [19] Lü XIAO-YANG, LI HUA-BING. SIMULATION OF THERMAL VISCOUS CAVITY FLOW IN HIGH REYNOLD NUMBER BY THE LATTICE BOLTZMANN METHOD. Acta Physica Sinica, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
    [20] TU XIANG-ZHENG. TEMPERATURE GRADIENT LIQUID PHASE EPITAXY UNDER A STEADY NATURAL CONVECTION FLOW. Acta Physica Sinica, 1982, 31(1): 78-89. doi: 10.7498/aps.31.78
Metrics
  • Abstract views:  6262
  • PDF Downloads:  276
  • Cited By: 0
Publishing process
  • Received Date:  24 October 2014
  • Accepted Date:  28 January 2015
  • Published Online:  05 August 2015

/

返回文章
返回
Baidu
map