Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of convection heat transfer mechanism in nanofluids

Xiao Bo-Qi Fan Jin-Tu Jiang Guo-Ping Chen Ling-Xia

Citation:

Analysis of convection heat transfer mechanism in nanofluids

Xiao Bo-Qi, Fan Jin-Tu, Jiang Guo-Ping, Chen Ling-Xia
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Energy shortage and environment pollution are the major and large problems presently encountered by human all over the world. It is an effective way to save energy and reduce emission of polluted gas by using the nanofluids technology. There has been not a widely recognized theory which can explain flow and heat transfer of nanofluids until now. So the mechanism of flow and heat transfer of nanofluids is not clear. Considering the Brownian motion of nanoparticles in nanofluids, a mechanism model for heat transfer by heat convection is proposed based on the fractal distribution of nanoparticle. No additional/new empirical constant is introduced. The proposed fractal model for heat flux of nanofluids is found to be a function of temperature, average nanoparticle size, concentration, fractal dimension of nanoparticles, fractal dimension of active cavities on boiling surfaces and basic fluid property in pool boiling. The model predictions are compared with the existing experimental data, and fair agreement between the model predictions and experimental data is found for the cases of different nanoparticle concentrations and different average nanoparticle diameters. The analytical model can reveal the physical principles for convection heat transfer in nanofluids.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11102100), the Natural Science Foundation of Fujian Province, China (Grant No. 2012J01017), and the Scientific Research Special Foundation for Provincial University of Education Department of Fujian Province of China (Grant No. JK2011056).
    [1]

    Choi U S in Siginer D A, Wang H P eds. Developments and Applications of non-Newtonian glows ASME FED-231 (New York: [s.n.]) p99

    [2]

    Xuan Y M, Li Q 2000 Int. J. Heat Fluid Flow 21 58

    [3]

    Xie H Q, Xi T G, Wang J C 2003 Acta Phys. Sin. 52 1444 (in Chinese) [谢华清, 奚同庚, 王锦昌 2003 52 1444]

    [4]

    Das S K, Putra N, Roetzel W 2003 Int. J. Heat Mass Transfer 46 851

    [5]

    Jang S P, Choi S U S 2004 Appl. Phys. Letts. 84 4316

    [6]

    Milanova D, Kumar R 2005 Appl. Phys. Lett. 87 233107

    [7]

    Prasher R, Bhattacharya P, Phelan P E 2005 Phys. Rev. Lett. 94 025901

    [8]

    Hong K S, Hong Tae-Keun, Yang Ho-Soon 2006 Appl. Phys. Lett. 88 031901

    [9]

    Liu Z H, Liao L 2008 Int. J. Heat Mass Tran. 51 2593

    [10]

    Trisaksri V, Wongwises S 2009 Int. J. Heat Mass Tran. 52 1582

    [11]

    Xie H Q, Chen L F 2009 Acta Phys. Sin. 58 2513 (in Chinese) [谢华清, 陈立飞 2009 58 2513]

    [12]

    Zhao S, Yin J B, Zhao X P 2010 Acta Phys. Sin. 59 3302 (in Chinese) [赵晟, 尹剑波, 赵晓鹏 2010 59 3302]

    [13]

    Duangthongsuk W, Wongwises S 2010 Int. J. Heat Mass Tran. 53 334

    [14]

    Avramenko A A, Blinov D G, Shevchuk V 2011 Phys. Fluids 23 082002

    [15]

    Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112

    [16]

    Xiao B Q, Yu B M 2007 Int. J. Thermal Sci. 46 426

    [17]

    Xiao B Q, Yu B M 2007 Int. J. Multiphase Flow. 33 1126

    [18]

    Xiao B Q, Wang Z C, Jiang G P, Chen L X, Wei M J, Rao L Z 2009 Acta Phys. Sin. 58 2513 (in Chinese) [肖波齐, 王宗篪, 蒋国平, 陈玲霞, 魏茂金, 饶连周 2009 58 2523]

    [19]

    Wang B X, Zhou L P, Peng X F 2003 Int. J. Heat Mass Tran. 46 2665

    [20]

    Yu B M, Cheng P 2002 Int. J. Heat Mass Tran. 45 2983

    [21]

    Feng Y J, Yu B M, Zou M Q, Zhang D M 2004 J. Phys. D: Appl. Phys. 37 3425

    [22]

    Maxwell J C 1954 A Treatise on Electricity and Magnetism (Cambridge: Oxford University Press) p435

    [23]

    Mikic B B, Rohsenow W M 1969 J. Heat Transfer 91 245

    [24]

    Judd R L, Hwang K S 1976 Int. J. Heat Mass Tran. 98 623

    [25]

    Han C Y, Griffith P 1965 Int. J. Heat Mass Tran. 8 887

    [26]

    Yu B M, Cheng P 2002 AIAA J. Thermophysics and Heat Transfer 16 22

    [27]

    Yu B M, Cheng P 2002 J. Heat Transfer 124 1117

    [28]

    Bang I C, Chang S H 2005 Int. J. Heat Mass Tran. 48 2407

    [29]

    Cai J C, Yu B M, Zou M Q, Luo L 2010 Energy Fuels 24 1860

    [30]

    Cai J C, Yu B M 2010 Fractals 18 417

    [31]

    Cai J C, Yu B M, Zou M Q, Mei M F 2010 Chem. Eng. Sci. 65 5178

    [32]

    Cai J C, Yu B M 2011 Transp. Porous Media 89 251

    [33]

    Jiang G P, Tao W J, Huan S, Xiao B Q 2012 Acta Phys. Sin. 61 070503 (in Chinese) [蒋国平, 陶文俊, 浣石, 肖波齐 2012 61 070503]

  • [1]

    Choi U S in Siginer D A, Wang H P eds. Developments and Applications of non-Newtonian glows ASME FED-231 (New York: [s.n.]) p99

    [2]

    Xuan Y M, Li Q 2000 Int. J. Heat Fluid Flow 21 58

    [3]

    Xie H Q, Xi T G, Wang J C 2003 Acta Phys. Sin. 52 1444 (in Chinese) [谢华清, 奚同庚, 王锦昌 2003 52 1444]

    [4]

    Das S K, Putra N, Roetzel W 2003 Int. J. Heat Mass Transfer 46 851

    [5]

    Jang S P, Choi S U S 2004 Appl. Phys. Letts. 84 4316

    [6]

    Milanova D, Kumar R 2005 Appl. Phys. Lett. 87 233107

    [7]

    Prasher R, Bhattacharya P, Phelan P E 2005 Phys. Rev. Lett. 94 025901

    [8]

    Hong K S, Hong Tae-Keun, Yang Ho-Soon 2006 Appl. Phys. Lett. 88 031901

    [9]

    Liu Z H, Liao L 2008 Int. J. Heat Mass Tran. 51 2593

    [10]

    Trisaksri V, Wongwises S 2009 Int. J. Heat Mass Tran. 52 1582

    [11]

    Xie H Q, Chen L F 2009 Acta Phys. Sin. 58 2513 (in Chinese) [谢华清, 陈立飞 2009 58 2513]

    [12]

    Zhao S, Yin J B, Zhao X P 2010 Acta Phys. Sin. 59 3302 (in Chinese) [赵晟, 尹剑波, 赵晓鹏 2010 59 3302]

    [13]

    Duangthongsuk W, Wongwises S 2010 Int. J. Heat Mass Tran. 53 334

    [14]

    Avramenko A A, Blinov D G, Shevchuk V 2011 Phys. Fluids 23 082002

    [15]

    Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112

    [16]

    Xiao B Q, Yu B M 2007 Int. J. Thermal Sci. 46 426

    [17]

    Xiao B Q, Yu B M 2007 Int. J. Multiphase Flow. 33 1126

    [18]

    Xiao B Q, Wang Z C, Jiang G P, Chen L X, Wei M J, Rao L Z 2009 Acta Phys. Sin. 58 2513 (in Chinese) [肖波齐, 王宗篪, 蒋国平, 陈玲霞, 魏茂金, 饶连周 2009 58 2523]

    [19]

    Wang B X, Zhou L P, Peng X F 2003 Int. J. Heat Mass Tran. 46 2665

    [20]

    Yu B M, Cheng P 2002 Int. J. Heat Mass Tran. 45 2983

    [21]

    Feng Y J, Yu B M, Zou M Q, Zhang D M 2004 J. Phys. D: Appl. Phys. 37 3425

    [22]

    Maxwell J C 1954 A Treatise on Electricity and Magnetism (Cambridge: Oxford University Press) p435

    [23]

    Mikic B B, Rohsenow W M 1969 J. Heat Transfer 91 245

    [24]

    Judd R L, Hwang K S 1976 Int. J. Heat Mass Tran. 98 623

    [25]

    Han C Y, Griffith P 1965 Int. J. Heat Mass Tran. 8 887

    [26]

    Yu B M, Cheng P 2002 AIAA J. Thermophysics and Heat Transfer 16 22

    [27]

    Yu B M, Cheng P 2002 J. Heat Transfer 124 1117

    [28]

    Bang I C, Chang S H 2005 Int. J. Heat Mass Tran. 48 2407

    [29]

    Cai J C, Yu B M, Zou M Q, Luo L 2010 Energy Fuels 24 1860

    [30]

    Cai J C, Yu B M 2010 Fractals 18 417

    [31]

    Cai J C, Yu B M, Zou M Q, Mei M F 2010 Chem. Eng. Sci. 65 5178

    [32]

    Cai J C, Yu B M 2011 Transp. Porous Media 89 251

    [33]

    Jiang G P, Tao W J, Huan S, Xiao B Q 2012 Acta Phys. Sin. 61 070503 (in Chinese) [蒋国平, 陶文俊, 浣石, 肖波齐 2012 61 070503]

  • [1] Sui Peng-xiang. Effect of nanoparticle size on natural convection patterns of nanofluids with the lattice Boltzmann method. Acta Physica Sinica, 2024, 73(23): 1-13. doi: 10.7498/aps.73.20241332
    [2] Zhao Da-Shuai, Sun Zhi, Sun Xing, Sun Huai-De, Han Bai. Micro gap air discharge based on fractal theory. Acta Physica Sinica, 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [3] Liu Zhe, Wang Lei-Lei, Shi Peng-Peng, Cui Hai-Hang. Experiments and analytical solutions of light driven flow in nanofluid droplets. Acta Physica Sinica, 2020, 69(6): 064701. doi: 10.7498/aps.69.20191508
    [4] Zhang Bei-Hao, Zheng Lin. Numerical simulation of natural convection of nanofluids in an inclined square porous enclosure by lattice Boltzmann method. Acta Physica Sinica, 2020, 69(16): 164401. doi: 10.7498/aps.69.20200308
    [5] Zhang Zhi-Qi, Qian Sheng, Wang Rui-Jin, Zhu Ze-Fei. Effect of aggregation morphology of nanoparticles on thermal conductivity of nanofluid. Acta Physica Sinica, 2019, 68(5): 054401. doi: 10.7498/aps.68.20181740
    [6] He Yu-Chen, Liu Xiang-Jun. Simulation studies on the transport properties of Cu-H2O nanofluids based on water continuum assumption. Acta Physica Sinica, 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [7] Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping. Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [8] Guo Ya-Li, Xu He-Han, Shen Sheng-Qiang, Wei Lan. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method. Acta Physica Sinica, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [9] Xing Hong-Yan, Gong Ping, Xu Wei. Small target detection in the background of sea clutter using fractal method. Acta Physica Sinica, 2012, 61(16): 160504. doi: 10.7498/aps.61.160504
    [10] Wu Guo-Cheng, Shi Xiang-Chao. Fractional differentiability of the non-smooth heat curve. Acta Physica Sinica, 2012, 61(19): 190502. doi: 10.7498/aps.61.190502
    [11] Yun Mei-Juan, Zheng Wei, Li Yun-Bao, Li Yu. Fractal analysis of Herschel-Bulkley fluid flow in a capillary. Acta Physica Sinica, 2012, 61(16): 164701. doi: 10.7498/aps.61.164701
    [12] Zheng Kun-Can, Wen Zhi, Wang Zhan-Sheng, Lou Guo-Feng, Liu Xun-Liang, Wu Wen-Fei. Review on forced convection heat transfer in porous media. Acta Physica Sinica, 2012, 61(1): 014401. doi: 10.7498/aps.61.014401
    [13] Yang Juan, Bian Bao-Min, Peng Gang, Li Zhen-Hua. The fractal character of two-parameter pulse model for random signal. Acta Physica Sinica, 2011, 60(1): 010508. doi: 10.7498/aps.60.010508
    [14] Yuan Mei-Juan, Zheng Wei, Yu Bo-Ming, Yuan Jie. Fractal analysis of Casson fluid flow in porous media. Acta Physica Sinica, 2011, 60(2): 024703. doi: 10.7498/aps.60.024703
    [15] Zhang Li, Liu Shu-Tang. Control of thermal diffusion fractal growth of thin plate under environmental disturbance. Acta Physica Sinica, 2010, 59(11): 7708-7712. doi: 10.7498/aps.59.7708
    [16] Zhao Sheng, Yin Jian-Bo, Zhao Xiao-Peng. Tunable optical properties of Au nanofluids under electric field. Acta Physica Sinica, 2010, 59(5): 3302-3308. doi: 10.7498/aps.59.3302
    [17] Xie Hua-Qing, Chen Li-Fei. Mechanism of enhanced convective heat transfer coefficient of nanofluids. Acta Physica Sinica, 2009, 58(4): 2513-2517. doi: 10.7498/aps.58.2513
    [18] Li Tong, Shang Peng-Jian. A multifractal approach to palmprint recognition. Acta Physica Sinica, 2007, 56(8): 4393-4400. doi: 10.7498/aps.56.4393
    [19] Shu Xue-Ming, Fang Jun, Shen Shi-Fei, Liu Yong-Jin, Yuan Hong-Yong, Fan Wei-Cheng. Study on fractal coagulation characteristics of fire smoke particles. Acta Physica Sinica, 2006, 55(9): 4466-4471. doi: 10.7498/aps.55.4466
    [20] Xie Hua-Qing, Xi Tong-Geng, Wang Jin-Chang. Study on the mechanism of heat conduction in nanofluid medium. Acta Physica Sinica, 2003, 52(6): 1444-1449. doi: 10.7498/aps.52.1444
Metrics
  • Abstract views:  8638
  • PDF Downloads:  632
  • Cited By: 0
Publishing process
  • Received Date:  23 September 2011
  • Accepted Date:  28 November 2011
  • Published Online:  05 August 2012

/

返回文章
返回
Baidu
map