-
ICF design requires smooth and uniform deuterium-tritium (D-T) ice layers in a spherical shell. Thermal environment around the capsule is the key to reach the low-mode ice layer roughness requirement and obtain a high quality ice layer. In this paper, we present the results of three-dimensional simulation for an indirect-driven cryogenic target, focusing on the issues of heat transfer and natural convection flow inside the hohlraum. A thermal and hydrodynamic calculation is first proposed to investigate the convection heat transfer effect on the D-T ice layer. Comparing the two cases with gravity considered or neglected, we find that the temperature variation at the ice layer inner surface caused by the natural convection flow and the hohlraum's structure are of the same order of magnitude. Then the parameters study on Rayleigh number, which is a dimensionless number associated with free convection, is carried out. Thermal simulations on different Rayleigh number are provided. Temperature variation at the D-T ice layer inner surface is to increase as soon as the Rayleigh number reaches 60. Comparisons among different gases under different operating pressure conditions are made. In order to avoid the convection heat transfer effect in a wide range of pressure, it is necessary to take pure helium or mixture gas with a small amount of hydrogen as the tamping gas. The influence of hohlraum's orientation on the natural convection is also studied. It is found that the convective heat transfer effect in a horizontally orientated hohlraum is stronger than that in a vertical one. Based on these, we discuss the possibility to eliminate the convection flow by partitioning the hohlraum into several regions. The calculated results for several cases of different gas-region models indicate that the convection flow can be eliminated with an appropriate division in a vertically orientated hohlaum but cannot in a horizontally orientated one. The conclusions in this paper have certain guiding significance for further design and experiments of cryogenic target.
-
Keywords:
- inertial confinement fusion (ICF) /
- cryogenic target /
- free convection flow /
- thermal simulation
[1] Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature506 343
[2] Haan S W, Salmonson J D, Clark D S, Ho D D, Hammel B A, Callahan D A, Cerjan C J, Edwards M J, Hatchett S P, Landen O L, Lindl J D, MacGowan B J, Marinak M M, Munro D H, Robey H F, Spears B K, Suter L J, Town R P, Weber S V, Wilson D C 2011 Fusion Sci. Technol. 59 1
[3] Hoffer J K, Foreman L R 1988 Phys. Rev. Lett. 60 1310
[4] Chernov A A, Kozioziemski B J, Koch J A, Atherton L J, Johnson M A, Hamza A V, Kucheyev S O, Lugten J B, Mapoles E A, Moody J D, Salmonson J D, Sater J D 2009 Appl. Phys. Lett. 94 064105
[5] London R A, Kozioziemski B J, Marinak M M Kerbel G D, Bittner D N 2006 Fusion Sci. Technol. 49 608
[6] Wang F, Peng X S, Kang D G, Liu S Y, Xu T 2013 Chin. Phys.B 22 115204
[7] Lei H L, Li J, Tang Y J, Liu Y Q 2009 Rev. Sci. Instrum. 80 033103
[8] Wang K, Lin W, Liu Y Q, Xie D, Li J, Ma K Q, Tang Y J, Lei H L 2012 Acta Phys. Sin. 61 195204 (in Chinese) [王凯, 林伟, 刘元琼, 谢端, 黎军, 马坤全, 唐永建, 雷海乐 2012 61 195204]
[9] Bi P, Lei H L, Liu Y Q, Li J, Yang X D 2013 Acta Phys. Sin. 62 062802 (in Chinese) [毕鹏, 雷海乐, 刘元琼, 黎军, 杨向东 2012 61 062802]
[10] Yin J, Chen S H, Wen C W, Xia L D, Li H R, Huang X, Yu M M, Liang J H, Peng S M 2015 Acta Phys. Sin. 64 015202 (in Chinese) [尹剑, 陈绍华, 温成伟, 夏立东, 李海容, 黄鑫, 余铭铭, 梁建华, 彭述明 2015 64 015202]
[11] Sanchez J J, Giedt W H 2003 Fusion Sci. Technol. 44 811
[12] Sanchez J J, Giedt W H 2003 Fusion Sci. Technol. 45 253
[13] Giedt W H, Sanchez J J, Bernat T P 2006 Fusion Sci. Technol. 49 588
[14] Kozioziemski B J, Mapoles E R, Sater J D, Chernov A A, Moody J D, Lugten J B, Johnson M A 2011 Fusion Sci. Technol. 59 14
[15] Lallet F, Gauvin C, Martin M, Moll G 2011 Fusion Sci. Technol.59 171
[16] Moll G, Martin M, Collier R 2009 Fusion Sci. Technol. 55 283
[17] Moll G, Martin M, Collier R 2011 Fusion Sci. Technol. 59 182
[18] Souers P C 1986 Hydrogen Properties for Fusion Energy (University of California, Berkeley) pp105
[19] Chen G B, Bao R, Huang Y H 2006 Cryogenic Technology: Properties (Beijing: Chemical Industry Press) p103-112 [陈国邦, 包锐, 黄永华 2006 低温工程技术(数据卷)(北京:化学工业出版社) 第103–112页]
-
[1] Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature506 343
[2] Haan S W, Salmonson J D, Clark D S, Ho D D, Hammel B A, Callahan D A, Cerjan C J, Edwards M J, Hatchett S P, Landen O L, Lindl J D, MacGowan B J, Marinak M M, Munro D H, Robey H F, Spears B K, Suter L J, Town R P, Weber S V, Wilson D C 2011 Fusion Sci. Technol. 59 1
[3] Hoffer J K, Foreman L R 1988 Phys. Rev. Lett. 60 1310
[4] Chernov A A, Kozioziemski B J, Koch J A, Atherton L J, Johnson M A, Hamza A V, Kucheyev S O, Lugten J B, Mapoles E A, Moody J D, Salmonson J D, Sater J D 2009 Appl. Phys. Lett. 94 064105
[5] London R A, Kozioziemski B J, Marinak M M Kerbel G D, Bittner D N 2006 Fusion Sci. Technol. 49 608
[6] Wang F, Peng X S, Kang D G, Liu S Y, Xu T 2013 Chin. Phys.B 22 115204
[7] Lei H L, Li J, Tang Y J, Liu Y Q 2009 Rev. Sci. Instrum. 80 033103
[8] Wang K, Lin W, Liu Y Q, Xie D, Li J, Ma K Q, Tang Y J, Lei H L 2012 Acta Phys. Sin. 61 195204 (in Chinese) [王凯, 林伟, 刘元琼, 谢端, 黎军, 马坤全, 唐永建, 雷海乐 2012 61 195204]
[9] Bi P, Lei H L, Liu Y Q, Li J, Yang X D 2013 Acta Phys. Sin. 62 062802 (in Chinese) [毕鹏, 雷海乐, 刘元琼, 黎军, 杨向东 2012 61 062802]
[10] Yin J, Chen S H, Wen C W, Xia L D, Li H R, Huang X, Yu M M, Liang J H, Peng S M 2015 Acta Phys. Sin. 64 015202 (in Chinese) [尹剑, 陈绍华, 温成伟, 夏立东, 李海容, 黄鑫, 余铭铭, 梁建华, 彭述明 2015 64 015202]
[11] Sanchez J J, Giedt W H 2003 Fusion Sci. Technol. 44 811
[12] Sanchez J J, Giedt W H 2003 Fusion Sci. Technol. 45 253
[13] Giedt W H, Sanchez J J, Bernat T P 2006 Fusion Sci. Technol. 49 588
[14] Kozioziemski B J, Mapoles E R, Sater J D, Chernov A A, Moody J D, Lugten J B, Johnson M A 2011 Fusion Sci. Technol. 59 14
[15] Lallet F, Gauvin C, Martin M, Moll G 2011 Fusion Sci. Technol.59 171
[16] Moll G, Martin M, Collier R 2009 Fusion Sci. Technol. 55 283
[17] Moll G, Martin M, Collier R 2011 Fusion Sci. Technol. 59 182
[18] Souers P C 1986 Hydrogen Properties for Fusion Energy (University of California, Berkeley) pp105
[19] Chen G B, Bao R, Huang Y H 2006 Cryogenic Technology: Properties (Beijing: Chemical Industry Press) p103-112 [陈国邦, 包锐, 黄永华 2006 低温工程技术(数据卷)(北京:化学工业出版社) 第103–112页]
Catalog
Metrics
- Abstract views: 6183
- PDF Downloads: 189
- Cited By: 0