-
利用格 子 Boltzmann方法模拟矩形腔内纳米流体Rayleigh-Benard对流, 得到温度场和流线分布, 比较分析不同Ra数、体积分数、粒径下纳米流体对流换热的变化情况. 结果表明: 在相同的Ra 数和体积分数下, 纳米流体的对流换热随着粒径的增大而减弱; 在相同的Ra数和粒径下, 纳米流体的对流换热随着体积分数增大而增强.
-
关键词:
- 纳米流体 /
- Raleigh-Benard /
- 多相流 /
- 格子Boltzmann方法
The lattice Boltzmann method is used to simulate the thermal field and flow field of nanofluid Raleigh-Benard convection in a rectangular cavity. The heat transfer characteristics of nanofluid are compared under different Raleigh numbers, volume fractions of nanoparticles and particle sizes. The results show that under the same Raleigh number and volume fraction, the convection heat transfer of nanofluid becomes weakened by increasing the particle size. Under the same Raleigh number and particle size, the convection heat transfer of nanofluid becomes strengthened by increasing the volume fraction of nanoparticles.-
Keywords:
- nanofluid /
- Raleigh-Benard /
- multiphase flow /
- lattice Boltzmann method
[1] Zhao B W, Xing R P 2008 J. Zhejiang Sci.-Tech. Univ. 25 457 (in Chinese) [赵秉文, 刑荣鹏 2008 浙江理工大学学报 25 457 ]
[2] Barakos G, Mistoulis E 1994 Int. J. Numer. Meth. Heat Fluid Fl. 18 695
[3] Ho C J, Liu W K, Chang Y S, Lin C C 2010 Int. J. Therm. Sci. 49 1345
[4] Agwa Nnana A G 2007 ASME, J. Heat Transfer 129 697
[5] Heris S Z, Etemad S G, Esfahany M N 2006 Int. Commun. Heat Mass 33 529
[6] Xuan Y M, Li Q 2000 Int. J. Heat Fluid Fl. 21 58
[7] Xuan Y M, Li Q 2003 J.Heat Trans. 125 151
[8] Wu X, Kumar R 2005 ASME Summer Heat Transfer Conference San Francisco, California, USA, July 17-22, 2005 p72660
[9] Fattahi E, Farhadi M, Sedighi K, Nemati H 2012 Int. J. Therm. Sci. 52 137
[10] Kefayati G H R, Hosseinizadeh S F, Gorji M, Sajjadi H 2011 Int. Commun. Heat Mass 38 798
[11] Guo Y L, Qin D Y, Shen S Q, Bennacer R 2012 Int. Commun. Heat Mass 39 350
[12] Hwang K S, Lee J H, Jang S P 2007 Int. J. Heat Mass Transf. 50 4003
[13] Santra A K, Sen S, Chakraborty N 2008 Enhanced Heat Transf. 15 273
[14] He X, Chen S, Doolen G D 1998 J. Comput. Phys. 146 282300
[15] Lin H 2008 M. S. Dissertation (Qingdao: Qingdao University of Science and Technology) (in Chinese) [林红 2008 硕士学位论文 (青岛: 青岛科技大学)]
[16] Qing D Y 2012 M. S. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [秦道洋 2012 硕士学位论文 (大连: 大连理工大学)]
-
[1] Zhao B W, Xing R P 2008 J. Zhejiang Sci.-Tech. Univ. 25 457 (in Chinese) [赵秉文, 刑荣鹏 2008 浙江理工大学学报 25 457 ]
[2] Barakos G, Mistoulis E 1994 Int. J. Numer. Meth. Heat Fluid Fl. 18 695
[3] Ho C J, Liu W K, Chang Y S, Lin C C 2010 Int. J. Therm. Sci. 49 1345
[4] Agwa Nnana A G 2007 ASME, J. Heat Transfer 129 697
[5] Heris S Z, Etemad S G, Esfahany M N 2006 Int. Commun. Heat Mass 33 529
[6] Xuan Y M, Li Q 2000 Int. J. Heat Fluid Fl. 21 58
[7] Xuan Y M, Li Q 2003 J.Heat Trans. 125 151
[8] Wu X, Kumar R 2005 ASME Summer Heat Transfer Conference San Francisco, California, USA, July 17-22, 2005 p72660
[9] Fattahi E, Farhadi M, Sedighi K, Nemati H 2012 Int. J. Therm. Sci. 52 137
[10] Kefayati G H R, Hosseinizadeh S F, Gorji M, Sajjadi H 2011 Int. Commun. Heat Mass 38 798
[11] Guo Y L, Qin D Y, Shen S Q, Bennacer R 2012 Int. Commun. Heat Mass 39 350
[12] Hwang K S, Lee J H, Jang S P 2007 Int. J. Heat Mass Transf. 50 4003
[13] Santra A K, Sen S, Chakraborty N 2008 Enhanced Heat Transf. 15 273
[14] He X, Chen S, Doolen G D 1998 J. Comput. Phys. 146 282300
[15] Lin H 2008 M. S. Dissertation (Qingdao: Qingdao University of Science and Technology) (in Chinese) [林红 2008 硕士学位论文 (青岛: 青岛科技大学)]
[16] Qing D Y 2012 M. S. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [秦道洋 2012 硕士学位论文 (大连: 大连理工大学)]
计量
- 文章访问数: 7457
- PDF下载量: 744
- 被引次数: 0