Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of natural convection of nanofluids in an inclined square porous enclosure by lattice Boltzmann method

Zhang Bei-Hao Zheng Lin

Citation:

Numerical simulation of natural convection of nanofluids in an inclined square porous enclosure by lattice Boltzmann method

Zhang Bei-Hao, Zheng Lin
PDF
HTML
Get Citation
  • In this work, numerical simulation of nature convection of Al2O3-H2O nanofluid in an inclined square porous enclosure is investigated to analyze the influence of different physical parameters on fluid flow and heat transfer via the lattice Boltzmann method. Due to stable chemical properties and low price in the dispersion system, Al2O3-H2O nanofluid is widely used in the field of industrial heat transfer enhancement, which is the focus of present work. When the nanofluid is transport in a porous media, the Darcy-Brinkman-Forchheimer model is usually used to describe the porous media effects on nanofluid flow. Compared with uniform thermal boundary condition, the natural convection of nanofluids with non-uniform thermal boundary condition has not received much attention. In this paper, the sinusoidal boundary condition is applied to the left side wall to analyze the heat transfer mechanism of Al2O3-H2O nanofluid in the inclined square porous enclosure. The effect of porosity (0.3 ≤ $\epsilon $ ≤ 0.9), Rayleigh number (103Ra ≤ 106), volume fraction of nanoparticle (0 ≤ ϕ ≤ 0.04), tilt angle (0° ≤ γ ≤ 120°) on the heat transfer performance are systematically investigated. Numerical results show that the non-uniform boundary condition can affect the heat transfer performance on Al2O3-H2O nanofluid with different physical quantities, which is different from the uniform boundary condition. When γ = 0° and Ra is fixed, the Nuave number (average Nusselt number) at the heated wall increases with porosity. When γ = 40°, 80° or 120°, the Nuave reaches its maximum value at $\epsilon $ = 0.7. In addition, if $\epsilon $ and Ra are fixed, the results show that the heat transfer performance is most efficient at γ = 40° whereas it is weakened at γ = 80°. Moreover, when different inclination angles are applied to the square cavity, the Nuave increases slightly with an augmentation of ϕ. In all, compared with the uniform temperature boundary condition, the effect of volume fraction of nanoparticles on the enhanced heat transfer is not significant, therefore, to improve the heat transfer performance of nanofluids with given ϕ and Ra, it is necessary to take advantage of the improvement of effective thermal conductivity for the nanofluids in porous media and the perturbation influence of inclination angles on the system together with using appropriate porosity and square cavity tilt angle to intervene the flow.
      Corresponding author: Zheng Lin, lz@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51876092, 51506097)
    [1]

    Kefayati G 2017 Int. J. Heat Mass Transfer 112 709Google Scholar

    [2]

    李新芳, 朱冬生 2009 低温与超导 37 67Google Scholar

    Li X F, Zhu D S 2009 Cryogenics & Superconductivity 37 67Google Scholar

    [3]

    张晶, 白国君, 马文强, 王刚 2017 甘肃科学学报 29 110

    Zhang J, Bai G J, Ma W Q, Wang G 2017 Journal of Gansu Sciences 29 110

    [4]

    Khanafer K, Vafai K, Lightstone M 2003 Int. J. Heat Mass Transfer 46 3639Google Scholar

    [5]

    Hatami M 2017 J. Mol. Liq. 233 1Google Scholar

    [6]

    Chen S, Du R 2011 Energy 36 1721Google Scholar

    [7]

    Selimefendigil F, Öztop H F 2016 J. Mol. Liq. 216 67Google Scholar

    [8]

    Hatami M 2017 Journal of Molecular Liquids 233 1

    [9]

    Jahanshahi M, Hosseinizadeh S F, Alipanah M, Dehghani A, Vakilinejad G R 2010 Int. Commun. Heat Mass Transfer 37 687Google Scholar

    [10]

    Mackie C, Desai P, Meyers C 1999 Int. J. Heat Mass Transfer 42 3337Google Scholar

    [11]

    Khair K 1985 Int. J. Heat Mass Transfer 28 909Google Scholar

    [12]

    Lam P, Prakash K 2014 Int. J. Heat Mass Transfer 69 390Google Scholar

    [13]

    Kaluri R, Basak T 2011 Energy 36 5065Google Scholar

    [14]

    Alsabery A, Chamkha A, Saleh H, Hashim I 2017 Int. J. Heat Mass Transfer 7 2357

    [15]

    Toosi M H, Siavashi M 2017 J. Mol. Liq. 238 553Google Scholar

    [16]

    Wu F, Zhou W, Ma X 2015 Int. J. Heat Mass Transfer 85 756Google Scholar

    [17]

    Basak T, Roy S, Paul T, Pop I 2006 Int. J. Heat Mass Transfer 49 1430Google Scholar

    [18]

    Ghasemi K, Siavashi M 2017 J. Mol. Liq. 233 415Google Scholar

    [19]

    Sivasankaran S, Alsabery A I, Hashim I 2018 Phys. A (Amsterdam, Neth.) 509 275Google Scholar

    [20]

    Ho C J, Chen M W, Li Z W 2008 Int. J. Heat Mass Transfer 51 4506Google Scholar

    [21]

    Ashorynejad H R, Hoseinpour B 2017 J. Theor. Appl. Mech. 62 86

    [22]

    Nield D A, Bejan A 2006 Convection in Porous Media (Vol. 3) (New York: Springer) pp37–55

    [23]

    Grott M, Knollenberg J, Krause C 2010 J. Geophys. Res.: Planets 115 E11005Google Scholar

    [24]

    Reddy K S, Sreedhar D 2016 Int. J. Curr. Eng. Technol. 6 2277

    [25]

    Sheikholeslami M, Gorji-Bandpy M, Domiri Ganji D 2013 Energy 60 501Google Scholar

    [26]

    Selimefendigil F, Öztop H 2014 Int. J. Heat Mass Transfer 78 741Google Scholar

    [27]

    Seta T, Takegoshi E, Okui K 2006 Math. Comput. Simul. 72 195Google Scholar

    [28]

    Mohamad A, Kuzmin A 2010 Int. J. Heat Mass Transfer 53 990Google Scholar

    [29]

    Sajjadi H, Delouei A A, Atashafrooz M, Sheikholeslami M 2018 Int. J. Heat Mass Transfer 126 489Google Scholar

    [30]

    Sajjadi H, Kefayati G 2015 Heat Transf. Asian Res. 45 795

    [31]

    Javadi K, Kazemi K 2018 Phys. Fluids 30 017104Google Scholar

    [32]

    Sadr M, Gorji H 2017 Phys. Fluids 29 122007Google Scholar

    [33]

    Davis G D V, Jones I P 1983 Int. J. Numer. Methods Fluids 3 227Google Scholar

    [34]

    Nithiarasu P, Seetharamu K N, Sundararajan T 1997 Int. J. Heat Mass Transfer 40 3955Google Scholar

    [35]

    Wang J, Lou Q, Xu H, Chen J, Yang M 2018 Int. Commun. Heat Mass Transf. 35 405

    [36]

    Kefayati G H R 2018 Int. J. Heat Mass Transfer 116 762Google Scholar

  • 图 1  物理模型示意图

    Figure 1.  Schematic diagram of the physical model.

    图 2  不同$ \epsilon $下温度场和流场的分布图像 (a) $\epsilon $ = 0.3; (b) $\epsilon $ = 0.5; (c) $\epsilon $ = 0.7; (d) $\epsilon $ = 0.9

    Figure 2.  Streamlines, isotherms contours for different $\epsilon $: (a) $\epsilon $ = 0.3; (b) $\epsilon $ = 0.5; (c) $\epsilon $ = 0.7; (d) $\epsilon $ = 0.9.

    图 3  (a)不同$ \epsilon $X = 0处的竖直速度分布; (b) Y = 1处的水平速度分布图

    Figure 3.  (a) Vertical velocity distribution at X = 0; (b) horizontal velocity distribution at Y = 1 for different$\epsilon $.

    图 4  (a)不同$\epsilon $下热壁面处Nuave数分布曲线; (b)热壁面处局部Nu数分布曲线

    Figure 4.  (a) At the heated wall Nuave number; (b) local Nu number for different $\epsilon $.

    图 5  不同Ra下温度场和流场的分布图像 (a) Ra = 103; (b) Ra = 104; (c) Ra = 105; (d) Ra = 106

    Figure 5.  Streamlines, isotherms contours for different Ra number: (a) Ra = 103; (b) Ra = 104; (c) Ra = 105; (d) Ra = 106.

    图 6  (a) 不同RaX = 0处的竖直速度分布; (b) Y = 1处的水平速度分布图

    Figure 6.  (a) Vertical velocity distribution at X = 0; (b) horizontal velocity distribution at Y = 1 for different $\epsilon $.

    图 7  (a)不同下Ra热壁面处Nuave数; (b)热壁面处局部Nu数分布曲线

    Figure 7.  (a) At the heated wall Nuave number; (b) local Nu number for different Ra.

    图 8  不同γ下温度场和流场的分布图像 (a) γ = 0°; (b) γ = 40°; (c) γ = 80°; (d) γ = 120°

    Figure 8.  Streamlines, isotherms contours for different γ number: (a) γ = 0°; (b) γ = 40°; (c) γ = 80°; (d) γ = 120°.

    图 9  (a)不同γY = 0.5处局部温度分布曲线; (b)热壁面处Vave/Nuave的分布曲线

    Figure 9.  (a) Local temperature distribution along the Y = 0.5; (b) average velocity in the y direction & Nuave number at the heated wall in different γ.

    图 10  (a)不同γ下热壁面处局部竖直速度V; (b)热壁面处局部Nu数的分布曲线

    Figure 10.  (a) Local velocity in the y direction; (b) local Nuave number at the heated wall in different γ.

    图 11  (a)随着$\epsilon $的增加不同γ时热壁面Nuave数分布曲线; (b)当γ = 0°, 40°时, 不同$\epsilon $下局部Nu数的分布曲线

    Figure 11.  (a) Variation of Nuave number as a function of $\epsilon $ in different γ at the heated wall; (b) when γ = 0°, 40°, variation of local Nu number at the heated wall in different $\epsilon $.

    图 12  (a)随着ϕ的增加不同γ下热壁面Nuave数分布曲线; (b)当γ = 0°, 40°时, 不同ϕ下局部Nu数的分布曲线

    Figure 12.  (a) Variation of Nuave number as a function of ϕ in different γ at the heated wall; (b) when γ = 0°, 40°, variation of local Nu number at the heated wall in different ϕ.

    表 1  H2O, Al2O3和玻璃纤维的热物理性质

    Table 1.  Thermophysical properties of water, Al2O3 and glass fibers.

    物性参数H2OAl2O3Glass fiber[23,24]
    ρ/kg·m–3997.13971650
    Cp/J·kg–1·K–14179765750
    k/W·m–1·K–10.613251.2
    β/K–121 × 10–51.89 × 10–5
    ds/nm47
    DownLoad: CSV

    表 2  纳米流体的热物性参数计算公式

    Table 2.  Calculation formula for thermodynamic properties of nanofluids.

    热物性参数计算表达式
    纳米流体粘度$\mu {}_{nf} = \dfrac{{{\mu _f}}}{{{{\left( {1 - \phi } \right)}^{2.5}}}}$
    纳米流体密度${\rho _{nf}} = \left( {1 - \phi } \right){\rho _f} + \phi {\rho _s}$
    纳米流体热容${\left( {\rho {C_p}} \right)_{nf}} = \left( {1 - \phi } \right){\left( {\rho {C_p}} \right)_f} + \phi {\left( {\rho {C_p}} \right)_s}$
    纳米流体热扩散系数${\alpha _{nf}} = \dfrac{{{k_{nf}}}}{{{{\left( {\rho {C_p}} \right)}_{nf}}}}$
    纳米流体热膨胀系数${\left( {\rho \beta } \right)_{nf}} = \left( {1 - \phi } \right){\left( {\rho \beta } \right)_f} + \phi {\left( {\rho \beta } \right)_s}$
    纳米流体导热系数${k_{nf}} = \dfrac{{{k_p} + 2{k_f} - 2\left( {{k_f} - {k_p}} \right)\phi }}{{{k_p} + 2{k_f} + 2\left( {{k_f} - {k_p}} \right)\phi }}{k_f}$
    多孔介质有效
    导热系数
    ${k_m} = \left( {1 - \epsilon} \right){k_p} + {\epsilon k_{nf}}$
    DownLoad: CSV

    表 3  不同网格数与文献[33]的Nuave数比较

    Table 3.  Comparison of Nuave number with literature[33] in different grids number.

    不同网格数下的Nuave
    80 × 80100 × 100120 × 120140 × 140
    Nuave8.5288.6708.7448.785
    误差/%3.39%1.70%0.83%0.36%
    DownLoad: CSV

    表 4  本文与文献[33]的Nuave数值结果的比较

    Table 4.  Comparison of Nuave number with previous literature[33].

    Ra文献[27]本文结果误差/%
    1031.1161.1230.63
    1042.2382.2661.25
    1054.5094.5561.04
    1068.8178.7440.83
    DownLoad: CSV

    表 5  本文与文献[34]的Nuave数值结果的对比

    Table 5.  Comparison of Nuave number with previous literature[34].

    NO.DaRa文献[34]本文结果误差/%
    110–21041.5301.4972.16
    210–21053.5553.4413.09
    310–25 × 1055.7405.6940.87
    DownLoad: CSV
    Baidu
  • [1]

    Kefayati G 2017 Int. J. Heat Mass Transfer 112 709Google Scholar

    [2]

    李新芳, 朱冬生 2009 低温与超导 37 67Google Scholar

    Li X F, Zhu D S 2009 Cryogenics & Superconductivity 37 67Google Scholar

    [3]

    张晶, 白国君, 马文强, 王刚 2017 甘肃科学学报 29 110

    Zhang J, Bai G J, Ma W Q, Wang G 2017 Journal of Gansu Sciences 29 110

    [4]

    Khanafer K, Vafai K, Lightstone M 2003 Int. J. Heat Mass Transfer 46 3639Google Scholar

    [5]

    Hatami M 2017 J. Mol. Liq. 233 1Google Scholar

    [6]

    Chen S, Du R 2011 Energy 36 1721Google Scholar

    [7]

    Selimefendigil F, Öztop H F 2016 J. Mol. Liq. 216 67Google Scholar

    [8]

    Hatami M 2017 Journal of Molecular Liquids 233 1

    [9]

    Jahanshahi M, Hosseinizadeh S F, Alipanah M, Dehghani A, Vakilinejad G R 2010 Int. Commun. Heat Mass Transfer 37 687Google Scholar

    [10]

    Mackie C, Desai P, Meyers C 1999 Int. J. Heat Mass Transfer 42 3337Google Scholar

    [11]

    Khair K 1985 Int. J. Heat Mass Transfer 28 909Google Scholar

    [12]

    Lam P, Prakash K 2014 Int. J. Heat Mass Transfer 69 390Google Scholar

    [13]

    Kaluri R, Basak T 2011 Energy 36 5065Google Scholar

    [14]

    Alsabery A, Chamkha A, Saleh H, Hashim I 2017 Int. J. Heat Mass Transfer 7 2357

    [15]

    Toosi M H, Siavashi M 2017 J. Mol. Liq. 238 553Google Scholar

    [16]

    Wu F, Zhou W, Ma X 2015 Int. J. Heat Mass Transfer 85 756Google Scholar

    [17]

    Basak T, Roy S, Paul T, Pop I 2006 Int. J. Heat Mass Transfer 49 1430Google Scholar

    [18]

    Ghasemi K, Siavashi M 2017 J. Mol. Liq. 233 415Google Scholar

    [19]

    Sivasankaran S, Alsabery A I, Hashim I 2018 Phys. A (Amsterdam, Neth.) 509 275Google Scholar

    [20]

    Ho C J, Chen M W, Li Z W 2008 Int. J. Heat Mass Transfer 51 4506Google Scholar

    [21]

    Ashorynejad H R, Hoseinpour B 2017 J. Theor. Appl. Mech. 62 86

    [22]

    Nield D A, Bejan A 2006 Convection in Porous Media (Vol. 3) (New York: Springer) pp37–55

    [23]

    Grott M, Knollenberg J, Krause C 2010 J. Geophys. Res.: Planets 115 E11005Google Scholar

    [24]

    Reddy K S, Sreedhar D 2016 Int. J. Curr. Eng. Technol. 6 2277

    [25]

    Sheikholeslami M, Gorji-Bandpy M, Domiri Ganji D 2013 Energy 60 501Google Scholar

    [26]

    Selimefendigil F, Öztop H 2014 Int. J. Heat Mass Transfer 78 741Google Scholar

    [27]

    Seta T, Takegoshi E, Okui K 2006 Math. Comput. Simul. 72 195Google Scholar

    [28]

    Mohamad A, Kuzmin A 2010 Int. J. Heat Mass Transfer 53 990Google Scholar

    [29]

    Sajjadi H, Delouei A A, Atashafrooz M, Sheikholeslami M 2018 Int. J. Heat Mass Transfer 126 489Google Scholar

    [30]

    Sajjadi H, Kefayati G 2015 Heat Transf. Asian Res. 45 795

    [31]

    Javadi K, Kazemi K 2018 Phys. Fluids 30 017104Google Scholar

    [32]

    Sadr M, Gorji H 2017 Phys. Fluids 29 122007Google Scholar

    [33]

    Davis G D V, Jones I P 1983 Int. J. Numer. Methods Fluids 3 227Google Scholar

    [34]

    Nithiarasu P, Seetharamu K N, Sundararajan T 1997 Int. J. Heat Mass Transfer 40 3955Google Scholar

    [35]

    Wang J, Lou Q, Xu H, Chen J, Yang M 2018 Int. Commun. Heat Mass Transf. 35 405

    [36]

    Kefayati G H R 2018 Int. J. Heat Mass Transfer 116 762Google Scholar

  • [1] Sui Peng-xiang. Effect of nanoparticle size on natural convection patterns of nanofluids with the lattice Boltzmann method. Acta Physica Sinica, 2024, 73(23): 1-13. doi: 10.7498/aps.73.20241332
    [2] Feng Jing-Sen, Min Jing-Chun. Lattice Boltzmann method simulation of two-phase flow in horizontal channel. Acta Physica Sinica, 2023, 72(8): 084701. doi: 10.7498/aps.72.20222421
    [3] Lu Wei, Chen Shuo, Yu Zhi-Yuan, Zhao Jia-Yi, Zhang Kai-Xuan. Improvement of natural convection simulation based on energy conservation dissipative particle dynamics. Acta Physica Sinica, 2023, 72(18): 180203. doi: 10.7498/aps.72.20230495
    [4] Liu Zhe, Wang Lei-Lei, Shi Peng-Peng, Cui Hai-Hang. Experiments and analytical solutions of light driven flow in nanofluid droplets. Acta Physica Sinica, 2020, 69(6): 064701. doi: 10.7498/aps.69.20191508
    [5] Zhang Zhi-Qi, Qian Sheng, Wang Rui-Jin, Zhu Ze-Fei. Effect of aggregation morphology of nanoparticles on thermal conductivity of nanofluid. Acta Physica Sinica, 2019, 68(5): 054401. doi: 10.7498/aps.68.20181740
    [6] Hu Meng-Dan, Zhang Qing-Yu, Sun Dong-Ke, Zhu Ming-Fang. Three-dimensional lattice Boltzmann modeling of droplet condensation on superhydrophobic nanostructured surfaces. Acta Physica Sinica, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [7] Feng Dai-Li, Feng Yan-Hui, Shi Jun. Lattice Boltzamn model of phonon heat conduction in mesoporous composite material. Acta Physica Sinica, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [8] Huang Xin, Peng Shu-Ming, Zhou Xiao-Song, Yu Ming-Ming, Yin Jian, Wen Cheng-Wei. Numerical simulation of heat transfer and natural convection of the indirect-driven cryogenic target. Acta Physica Sinica, 2015, 64(21): 215201. doi: 10.7498/aps.64.215201
    [9] Liu Fei-Fei, Wei Shou-Shui, Wei chang-Zhi, Ren Xiao-Fei. Coupling double-distribution-function thermal lattice Boltzmann method based on the total energy type. Acta Physica Sinica, 2015, 64(15): 154401. doi: 10.7498/aps.64.154401
    [10] Qi Cong, He Guang-Yan, Li Yi-Min, He Yu-Rong. Numerical simulation of natural convection of square enclosure filled with Cu/Al2O3-water mixed nanofluid based on lattice Boltzmann method. Acta Physica Sinica, 2015, 64(2): 024703. doi: 10.7498/aps.64.024703
    [11] Lei Juan-Mian, Yang Hao, Huang Can. Comparisons among weakly-compressible and incompressible smoothed particle hdrodynamic algorithms for natural convection. Acta Physica Sinica, 2014, 63(22): 224701. doi: 10.7498/aps.63.224701
    [12] Chen Hai-Nan, Sun Dong-Ke, Dai Ting, Zhu Ming-Fang. Modeling of the interaction between solidification interface and bubble using the lattice Boltzmann method with large density ratio. Acta Physica Sinica, 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [13] Sun Dong-Ke, Xiang Nan, Chen Ke, Ni Zhong-Hua. Lattice Boltzmann modeling of particle inertial migration in a curved channel. Acta Physica Sinica, 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [14] Guo Ya-Li, Xu He-Han, Shen Sheng-Qiang, Wei Lan. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method. Acta Physica Sinica, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [15] Wang Zeng, Dong Gang, Yang Yin-Tang, Li Jian-Wei. Study on optimal size of repeater insertion with ununiform temperature distribution. Acta Physica Sinica, 2012, 61(5): 054102. doi: 10.7498/aps.61.054102
    [16] Xiao Bo-Qi, Fan Jin-Tu, Jiang Guo-Ping, Chen Ling-Xia. Analysis of convection heat transfer mechanism in nanofluids. Acta Physica Sinica, 2012, 61(15): 154401. doi: 10.7498/aps.61.154401
    [17] Zhou Feng-Mao, Sun Dong-Ke, Zhu Ming-Fang. Lattice Boltzmann modelling of liquid-liquid phase separation of monotectic alloys. Acta Physica Sinica, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [18] Sun Dong-Ke, Zhu Ming-Fang, Yang Chao-Rong, Pan Shi-Yan, Dai Ting. Modelling of dendritic growth in forced and natural convections. Acta Physica Sinica, 2009, 58(13): 285-S291. doi: 10.7498/aps.58.285
    [19] Xie Hua-Qing, Chen Li-Fei. Mechanism of enhanced convective heat transfer coefficient of nanofluids. Acta Physica Sinica, 2009, 58(4): 2513-2517. doi: 10.7498/aps.58.2513
    [20] Xie Hua-Qing, Xi Tong-Geng, Wang Jin-Chang. Study on the mechanism of heat conduction in nanofluid medium. Acta Physica Sinica, 2003, 52(6): 1444-1449. doi: 10.7498/aps.52.1444
Metrics
  • Abstract views:  9431
  • PDF Downloads:  136
  • Cited By: 0
Publishing process
  • Received Date:  28 February 2020
  • Accepted Date:  08 April 2020
  • Available Online:  18 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回
Baidu
map