-
The photonic absolute bandgaps have many potential applications in specific fields, and some methods to enlarge the absolute bandgaps, such as adjusting the material and the rotational symmetry, constituting a heterostructure have been explored. Recently, with the occurring of metamaterial, the photonic crystal based on metamaterial has also realized the wide absolute bandgaps. However, the metamaterial is an artificially structured material of which the construction is more complicated. In this paper, one-dimensional magnetic photonic crystal structure with wide absolute bandgaps is proposed, which is composed of two kinds of magnetic materials with the same refractive index and physical thickness but different wave impedances. First of all, the transmission properties of one-dimensional magnetic and non-magnetic photonic crystals with the same wave impedance ratio are studied by using transfer matrix method. It is shown that the normalized frequency bandwidth of magnetic photonic crystal, i. e. the ratio of the band of bandgap to its center, is 0.41, while the normalized frequency bandwidth of the non-magnetic photonic crystal is 0.14. From the results, we can conclude that the absolute bandgap of the above magnetic photonic crystal is wider than that of non-magnetic photonic crystal because the former bandgap is not sensitive to the incident angle nor polarization. Secondly, we adjust the wave impedance ratios of the two kinds of magnetic materials and make them respectively reach 2, 4 and 6, with the refractive index and the physical thickness kept unchanged. By analyzing their transmission properties, it is found that the normalized frequency bandwidths of the absolute bandgaps are respectively 0.47, 0.84 and 1.03, and the greater the difference between the two wave impedances, the wider the normalized frequency bandwidth is. Thirdly, we investigate the influence of the per-layer physical thickness of the magnetic material on the bandgap, with the other parameters remaining unchanged. It is shown that the center of the absolute bandgap shifts toward high frequency with the decrease of the per-layer physical thickness. Finally, a kind of heterostructure is constructed by the above two one-dimensional magnetic photonic crystals. The normalized frequency ranges of the first and the second absolute bandgap of one magnetic photonic crystal structure are respectively 1.18-2.85 and 5.37-6.85. The normalized frequency range of the absolute bandgap of the other magnetic photonic crystal is 2.37-5.68. The normalized frequency range of the absolute bandgap of the heterostructure can be enlarged to 1.18-6.85 and the corresponding normalized frequency bandwidth can reach more than 1.41. The wide absolute bandgaps can be applied to integrated optics, optical fiber communication and high-power laser systems, according to which we may design the polarization-independent and omnidirectional devices such as reflectors, optical switchers and optical filters.
-
Keywords:
- absolute bandgap /
- photonic crystals /
- magnetic material
[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Joannopoulos J D, Meade R D, Winn J N 1995 Photonic Crystals:Molding the Flow of Light(Princeton:Princeton Univ. Press)
[4] Sakoda K 2001 Optical Properties of Photonic Crystals (Berlin:Springer-Verlag)
[5] Dowling J P 1998 Science 282 1841
[6] Liu H, Yao J Q, Li E B, Wen W Q, Zhang Q, Wang P 2006 Acta Phys. Sin. 55 230 (in Chinese)[刘欢, 姚建铨, 李恩邦, 温午麒, 张强, 王鹏2006 55 230]
[7] Cheng X P, Cao Q X 2008 Acta Phys. Sin. 57 3249 (in Chinese)[程旭攀, 曹全喜2008 57 3249]
[8] Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679
[9] Ibanescu M, Fink Y, Fan S, Thomas E L, Joannopoulos J D 2000 Science 289 415
[10] Jiang L, Zheng G, Shi L, Yuan J, Li X 2008 Opt. Commun. 281 4882
[11] Hart S D, Maskaly G R, Temelkuran B, Prideaux P H, Joannopoulos J D, Fink Y 2002 Science 296 510
[12] Lu Y H, Huang M D, Park S Y, Kim P J, Nahm T U, Lee Y P, Rhee J Y 2007 J. Appl. Phys. 101 036110
[13] Luo Z M, Tang Z, Xiang Y, Luo H, Wen S 2009 Appl. Phys. B 94 641
[14] Luo Z M, Qu S, Liu J, Tian P 2013 J. Mod. Opt. 60 171
[15] Luo Z M, Chen M, Liu J, Lei D J 2016 Opt. Commun. 365 120
[16] Winn J N, Fink Y, Fan S, Joannopoulos J D 1998 Opt. Lett. 23 1573
[17] Zhang J, Benson T M 2013 J. Mod. Opt. 60 1804
[18] Suthar B, Bhargava A 2012 Opt. Commun. 285 1481
[19] Joseph S, Hafiz A K 2014 Optik 125 2734
[20] Han P, Wang H 2005 J. Opt. Soc. Am. B 22 1571
[21] Feng X, Li H 2013 Eur. Phys. J. D 67 1
[22] Xiang Y, Dai X, Wen S, Fan D 2007 J. Opt. Soc. Am. A 24 A28
[23] Yin C P, Dong J W, Wang H Z 2009 Eur. Phys. J. B 67 221
[24] Ouyang Z B, Mao D, Liu C P, Wang J C 2008 J. Opt. Soc. Am. B 25 297
[25] Yariv A, Yeh P 2007 Optical Electronics in Modern Communications(New York:Oxford University Press) pp199-204
[26] Yeh P 1988 Optical Waves in Layered Media(New York:Wiley) pp58-67
[27] Sigalas M M, Soukoulis C M, Biswas R, Ho K M 1997 Phys. Rev. B 56 959
[28] Teng C C, Zhou W, Zhuang Y Y, Chen H M 2005 Opt. Lett. 30 2936
[29] Kong J A (translated by Wu J) 2003 Electromagnetic Wave Theory (Beijing: Publishing House of Electronics Industry) pp81, 82 (in Chinese) [孔金瓯 著 (吴季 译) 2003电磁波理论(北京:电子工业出版社)第81, 82页]
[30] Wang L G, Chen H, Zhu S Y 2005 Opt. Lett. 30 2936
-
[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Joannopoulos J D, Meade R D, Winn J N 1995 Photonic Crystals:Molding the Flow of Light(Princeton:Princeton Univ. Press)
[4] Sakoda K 2001 Optical Properties of Photonic Crystals (Berlin:Springer-Verlag)
[5] Dowling J P 1998 Science 282 1841
[6] Liu H, Yao J Q, Li E B, Wen W Q, Zhang Q, Wang P 2006 Acta Phys. Sin. 55 230 (in Chinese)[刘欢, 姚建铨, 李恩邦, 温午麒, 张强, 王鹏2006 55 230]
[7] Cheng X P, Cao Q X 2008 Acta Phys. Sin. 57 3249 (in Chinese)[程旭攀, 曹全喜2008 57 3249]
[8] Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679
[9] Ibanescu M, Fink Y, Fan S, Thomas E L, Joannopoulos J D 2000 Science 289 415
[10] Jiang L, Zheng G, Shi L, Yuan J, Li X 2008 Opt. Commun. 281 4882
[11] Hart S D, Maskaly G R, Temelkuran B, Prideaux P H, Joannopoulos J D, Fink Y 2002 Science 296 510
[12] Lu Y H, Huang M D, Park S Y, Kim P J, Nahm T U, Lee Y P, Rhee J Y 2007 J. Appl. Phys. 101 036110
[13] Luo Z M, Tang Z, Xiang Y, Luo H, Wen S 2009 Appl. Phys. B 94 641
[14] Luo Z M, Qu S, Liu J, Tian P 2013 J. Mod. Opt. 60 171
[15] Luo Z M, Chen M, Liu J, Lei D J 2016 Opt. Commun. 365 120
[16] Winn J N, Fink Y, Fan S, Joannopoulos J D 1998 Opt. Lett. 23 1573
[17] Zhang J, Benson T M 2013 J. Mod. Opt. 60 1804
[18] Suthar B, Bhargava A 2012 Opt. Commun. 285 1481
[19] Joseph S, Hafiz A K 2014 Optik 125 2734
[20] Han P, Wang H 2005 J. Opt. Soc. Am. B 22 1571
[21] Feng X, Li H 2013 Eur. Phys. J. D 67 1
[22] Xiang Y, Dai X, Wen S, Fan D 2007 J. Opt. Soc. Am. A 24 A28
[23] Yin C P, Dong J W, Wang H Z 2009 Eur. Phys. J. B 67 221
[24] Ouyang Z B, Mao D, Liu C P, Wang J C 2008 J. Opt. Soc. Am. B 25 297
[25] Yariv A, Yeh P 2007 Optical Electronics in Modern Communications(New York:Oxford University Press) pp199-204
[26] Yeh P 1988 Optical Waves in Layered Media(New York:Wiley) pp58-67
[27] Sigalas M M, Soukoulis C M, Biswas R, Ho K M 1997 Phys. Rev. B 56 959
[28] Teng C C, Zhou W, Zhuang Y Y, Chen H M 2005 Opt. Lett. 30 2936
[29] Kong J A (translated by Wu J) 2003 Electromagnetic Wave Theory (Beijing: Publishing House of Electronics Industry) pp81, 82 (in Chinese) [孔金瓯 著 (吴季 译) 2003电磁波理论(北京:电子工业出版社)第81, 82页]
[30] Wang L G, Chen H, Zhu S Y 2005 Opt. Lett. 30 2936
计量
- 文章访问数: 6268
- PDF下载量: 350
- 被引次数: 0