搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算

栾丽君 何易 王涛 LiuZong-Wen

引用本文:
Citation:

CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算

栾丽君, 何易, 王涛, LiuZong-Wen

First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe

Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen
PDF
HTML
导出引用
  • CdS/CdMnTe异质结是具有集成分立光谱结构的叠层电池的“核芯”元件, 是驱动第三代太阳能电池发展的核心引擎, 其界面相互作用对大幅度提高太阳能电池的转换效率至关重要. 本文采用基于密度泛函理论的第一性原理计算构建CdS (002), CdMnTe (111)表面模型及Mn原子占据不同位置的CdS/CdMnTe异质结界面结构模型, 分析CdS (002), CdMnTe (111)表面及异质结界面的电子性质和光学性质. 晶格结构分析表明, CdS/CdMnTe异质结的晶格失配度约为3.5%, 弛豫后原子位置与键长均在界面处发生一定程度的变化. 态密度分析发现异质结界面的费米能级附近不存在界面态, 并且界面处的Cd, S, Te原子之间的轨道杂化可增强界面的结合能力. 差分电荷密度分析显示, 界面处发生了电荷的重新分配, 电子由CdMnTe转移到CdS侧. 光学分析显示, CdS/CdMnTe异质结主要吸收紫外光, 吸收系数可达105 cm–1, 但不同Mn原子位置的异质结光学性质也稍有差别. 在200—250 nm范围, Mn原子位于中间层的异质结的吸收系数更大, 但在250—900 nm范围内, Mn原子位于界面层的异质结吸收峰更高. 本文合理构建了CdS/CdMnTe异质结模型, 计算分析了其界面光电性能, 可为提高叠层电池的光电转换效率提供一定的理论参考, 为实现多带隙异质结的实验研究提供一定的理论依据.
    CdS/CdMnTe heterojunction is the core of photoelectric conversion of CdMnTe film solar cells, whose interface properties have an important influence on the cell efficiency. In this study, the first-principles calculation method based on density functional theory is used to build the surface model for each of the CdS (002) and the CdMnTe (111) and the model of CdS/CdMnTe heterojunction with Mn atoms occupying different positions, and to analyze their electronic properties and optical properties. The results show that the lattice mismatch of the CdS/CdMnTe heterojunction is about 3.5%, the atomic positions and bond lengths of the interface change slightly after relaxation. The density of states shows that there is no interface state near the Fermi level in CdS/CdMnTe interface. Besides, the atoms at CdS/CdMnTe interface are hybridized, which can enhance the interface bonding. The differential charge density analyses indicate that the charge transfer mainly occurs at the interface, and electrons transfer from CdMnTe to CdS. The optical analysis shows that CdS/CdMnTe heterojunction mainly absorbs ultraviolet light, and the absorption coefficient can reach 105 cm–1. However, the optical properties of heterojunctions with different Mn atom positions are slightly different. In a range of 200–250 nm, the absorption coefficient of the heterojunction with Mn atom in the middle layer is larger, but in a range of 250–900 nm, the absorption peak of the heterojunction with Mn atom in the interface layer is higher. The results in this paper can provide some references for improving the photoelectric conversion efficiency of stacked solar cells through the reasonable construction of the heterojunction model and the analysis of the interface photoelectric performance, which is beneficial to the experimental research of multi-band gap heterojunction.
      通信作者: 栾丽君, nmllj050@chd.edu.cn
    • 基金项目: 陕西省国际科技合作计划重点项目(批准号: 2020KWZ-008)资助的课题
      Corresponding author: Luan Li-Jun, nmllj050@chd.edu.cn
    • Funds: Project supported by the Major Project of International Scientific and Technological Cooperation Plan of Shaanxi Province, China (Grant No. 2020KWZ-008)
    [1]

    朱建国, 孙小松, 李卫 2007 电子与光电子材料 (北京: 国防工业出版社) 第125页

    Zhu J G, Sun X S, Li W 2007 Electronic and Optoelectronic Materials (Beijing: Defense Industry Press) p125 (in chinese)

    [2]

    Miles R W, Hynes K M, Forbes I 2005 Prog. Cryst. Growth Charact. Mater. 51 1Google Scholar

    [3]

    Mishima T, Taguchi M, Sakata H, Maruyama E 2011 Sol. Energy Mater. Sol. Cells 95 18Google Scholar

    [4]

    Jordan D, Nagle J P 1994 Prog. Photovoltaics 2 171Google Scholar

    [5]

    Cheng Y J, Yang S H, Hsu C S 2009 Chem. Rev. 109 5868Google Scholar

    [6]

    Mora-Seró I, Bisquert J 2010 J. Phys. Chem. Lett. 1 3046Google Scholar

    [7]

    Zhao J 2004 Sol. Energy Mater. Sol. Cells 82 53Google Scholar

    [8]

    Cojocaru-Miredin O, Choi P, Wuerz R, Raabe D 2011 Appl. Phys. Lett. 98 73Google Scholar

    [9]

    Yang L, Xuan Y, Tan J 2011 Opt. Express 19 A1165Google Scholar

    [10]

    Chopra K L, Paulson P D, Dutta V 2004 Prog. Photovoltaics 12 69Google Scholar

    [11]

    Zhang K, Guo H 2017 J. Mater. Sci. Mater. Electron. 28 17044Google Scholar

    [12]

    Wu X 2004 Sol. Energy 77 803Google Scholar

    [13]

    Chander S, De A K, Dhaka M S 2018 Sol. Energy 174 757Google Scholar

    [14]

    Chander S, Dhaka M S 2016 Phys. E 84 112Google Scholar

    [15]

    Lee S H, Gupta A, Wang S, Compaan A D, McCandless B E 2005 Sol. Energy Mater. Sol. Cells 86 551Google Scholar

    [16]

    Chander S, Dhaka M S 2019 Sol. Energy 183 544Google Scholar

    [17]

    Rohatgi A, Ringel S A, Welch J, Meeks E, Pollard K, Erbil A, Summers C J, Meyers P V 1988 Sol. Energy 24 185

    [18]

    Luan L J, Gao L, Lv H H, Yu P F, Wang T, He Y, Zheng D 2020 Sci. Rep. 10 1Google Scholar

    [19]

    Wang S L, Lee S H, Gupta A 2004 MRS Proc. 836 L5.39Google Scholar

    [20]

    侯泽荣, 万磊, 白治中, 王德亮 2010 中国科学技术大学学报 40 718Google Scholar

    Hou Z R, W L, Bai Z Z, Wang D L 2010 J. Univ. Sci. Tech. Chin. 40 718Google Scholar

    [21]

    Olusola O I, Madugu M L, Ojo A A, Dharmadasa I M 2020 J. Mater. Sci. Mater. Electron. 31 22151Google Scholar

    [22]

    Shafaay B A 2014 J. Chem., Biol. Phys. Sci. 4 1

    [23]

    Gueddim A, Madjet M E, Zerroug S, Bouarissa N 2016 Opt. Quantum Electron. 48 551Google Scholar

    [24]

    Llchuk H, Zmiiovska E, Petrus R, Semkive I, Lopatynskyi I, Kashuba 2020 J. Nano-Electron. Phys. 12 01027Google Scholar

    [25]

    Cao A, Tan T T, Zhang H, Du Y, Sun Y, Zha G 2018 Phys. B 545 323Google Scholar

    [26]

    Merad A, Kanoun M, Merad G, Cibert J, Aourag H 2005 Mater. Chem. Phys. 92 333Google Scholar

    [27]

    Liu H X, Tang F L, Xue H T, Zhang Y, Cheng Y W, Feng Y D 2016 Chin. Phys. B 25 123101Google Scholar

    [28]

    Shenoy S, Tarafder K 2020 J. Phys. Condens. Matter 32 275501Google Scholar

    [29]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [30]

    Shi L B, Xu C Y, Yuan H K 2011 Phys. B 406 3187Google Scholar

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [32]

    Butler K T, Frost J M, Walsh A 2015 Mater. Horiz. 2 228Google Scholar

    [33]

    Wang J S, Tong S C, Tsai Y H, Tsai W J, Yang C S, Chang Y H, Shen J L 2015 J. Alloys Compd. 646 129Google Scholar

    [34]

    Kumar S G, Rao K S R K 2014 Energy Environ. Sci. 7 45Google Scholar

    [35]

    Cheng Y W, Tang F L, Xue H T, Liu H X, Gao B, Feng Y D 2016 Mater. Sci. Semicond. Process. 45 9Google Scholar

    [36]

    Momma K, Izumi F 2008 J. Appl. Crystallogr. 41 653Google Scholar

    [37]

    Guo Y, Xue Y, Geng C, Li C, Li X, Niu Y 2019 J. Phys. Chem. C 123 16075Google Scholar

    [38]

    Yin W J, Shi T, Yan Y 2015 J. Phys. Chem. C 119 5253Google Scholar

    [39]

    Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J 2006 Adv. Mater. 18 789Google Scholar

    [40]

    Sharma S, Devi N, Verma U P, RajaRam P 2011 Phys. B 406 4547Google Scholar

    [41]

    Dadsetani M, Pourghazi A 2006 Phys. Rev. B 73 195102Google Scholar

    [42]

    Gajdos M, Hummer K, Kresse G, Furthmueller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

  • 图 1  表面模型的建立 (a) CdS (002)表面模型; (b) CdMnTe (111)-A1表面模型; (c) CdMnTe (111)-B1表面模型

    Fig. 1.  Building of the surface models: (a) Model of the CdS (002) surface; (b) A1 surface model of CdMnTe (111); (c) B1 surface model of CdMnTe (111).

    图 2  弛豫后的表面原子位置和层间距离的变化 (a) CdS (002)表面模型; (b) CdMnTe (111)-A1表面模型; (c) CdMnTe (111)-B1表面模型

    Fig. 2.  Variations of atomic positions and interlayer spacing after relaxation: (a) Model of the CdS (002) surface; (b) A1 surface model of CdMnTe (111); (c) B1 surface model of CdMnTe (111).

    图 3  表面模型总态密度和第1层及第5层局域态密度 (a) CdS (002); (b) CdMnTe (111)-A1; (c) CdMnTe (111)-B1

    Fig. 3.  Total density of states and the local density of states of the first layer and the fifth layer: (a) CdS (002); (b) A1 of CdMnTe (111); (c) B1 of CdMnTe (111).

    图 4  CdS/CdMnTe异质结模型 (a) Mn原子位于界面层的异质结模型(模型A2); (b) Mn原子位于中间层的异质结模型(模型B2)

    Fig. 4.  CdS/CdMnTe heterojunction models: (a) Mn atom being in the interface layer (model A2); (b) Mn atom in the internal layer (model B2).

    图 5  模型A2和B2的总能量随界面间距的变化

    Fig. 5.  Variation of total energy dependent on the interface distance of the models A2 and B2, respectively.

    图 6  弛豫前后界面及其附近原子键长的变化 (a)弛豫前的模型A2; (b)弛豫后的模型A2; (c)弛豫前的模型B2; (d)弛豫后的模型B2

    Fig. 6.  Bond lengths in/near of the interface before and after relaxation: (a) Before relaxation of A2; (b) after relaxation of A2; (c) before relaxation of B2; (d) after relaxation of B2.

    图 7  CdS/CdMnTe异质结总态密度与局域态密度 (a)模型A2; (b)模型B2

    Fig. 7.  Total density of states and local density of states of the CdS/CdMnTe heterojunction: (a) Model A2; (b) model B2.

    图 8  CdS/CdMnTe异质结界面处原子的分态密度 (a)模型A2; (b)模型B2

    Fig. 8.  Part density of states of different atoms in the CdS/CdMnTe interface: (a) Model A2; (b) model B2.

    图 9  电荷重新分布图 (a), (c)异质结A2与B2的差分电荷示意图和相应平面差分电荷密度曲线, 黄色区域代表电荷消耗, 蓝色区域代表电荷积累, 等值面值为0.00103 e3; (b), (d) A2与B2沿z轴方向的平均静电势

    Fig. 9.  Distribution diagram of charges: (a), (c) Charge density difference and the corresponding planar differential charge density curve of the A2 model and B2 model, respectively. The yellow region represents charge depletion, the bule region indicates charge accumulation, the isosurface value is 0.00103 e3. (b), (d) the average electrotactic potential difference of the A2 model and B2 model, respectively, along the direction of z axis.

    图 10  表面模型和异质结模型的吸收光谱 (a) CdS (002), CdMnTe (111)-B1表面和异质结B2模型; (b)异质结A2和B2模型

    Fig. 10.  Absorption spectra of surface models and heterojunction models: (a) Surface CdS (002), surfaces of CdMnTe (111)-B1, and B2 model of CdMnTe/CdS heterojunction model; (b) heterojunction A2 model and B2 model.

    表 1  CdTe和CdS晶格参数优化结果

    Table 1.  Optimal lattice parameters of CdTe and CdS.

    CdTeCdS*CdTe[25]*CdS[25]#CdTe[26]#CdS[27]
    a6.6424.2146.6464.2126.4814.140
    b6.6424.2146.6464.2126.4814.140
    c6.6426.8506.6466.8586.4816.720
    注: *为理论值, #为实验值.
    下载: 导出CSV

    表 2  弛豫后CdMnTe (111)和CdS (002)表面层间距离的变化

    Table 2.  Variations of interlayer spacing of CdMnTe (111) and CdS (002) surfaces after relaxation.

    Surfaceitemsd1-2d2-3d3-4d4-5
    CdMnTe-A1dCd-Te2.8292.8372.8312.831
    dMn-Te2.605
    d0.1380.0890.0000.000
    CdMnTe-B1dCd-Te2.7912.8412.8312.831
    dMn-Te2.697
    d0.1820.0930.0000.000
    CdSdCd-S2.5342.5382.5362.536
    d0.1200.1090.0000.000
    下载: 导出CSV
    Baidu
  • [1]

    朱建国, 孙小松, 李卫 2007 电子与光电子材料 (北京: 国防工业出版社) 第125页

    Zhu J G, Sun X S, Li W 2007 Electronic and Optoelectronic Materials (Beijing: Defense Industry Press) p125 (in chinese)

    [2]

    Miles R W, Hynes K M, Forbes I 2005 Prog. Cryst. Growth Charact. Mater. 51 1Google Scholar

    [3]

    Mishima T, Taguchi M, Sakata H, Maruyama E 2011 Sol. Energy Mater. Sol. Cells 95 18Google Scholar

    [4]

    Jordan D, Nagle J P 1994 Prog. Photovoltaics 2 171Google Scholar

    [5]

    Cheng Y J, Yang S H, Hsu C S 2009 Chem. Rev. 109 5868Google Scholar

    [6]

    Mora-Seró I, Bisquert J 2010 J. Phys. Chem. Lett. 1 3046Google Scholar

    [7]

    Zhao J 2004 Sol. Energy Mater. Sol. Cells 82 53Google Scholar

    [8]

    Cojocaru-Miredin O, Choi P, Wuerz R, Raabe D 2011 Appl. Phys. Lett. 98 73Google Scholar

    [9]

    Yang L, Xuan Y, Tan J 2011 Opt. Express 19 A1165Google Scholar

    [10]

    Chopra K L, Paulson P D, Dutta V 2004 Prog. Photovoltaics 12 69Google Scholar

    [11]

    Zhang K, Guo H 2017 J. Mater. Sci. Mater. Electron. 28 17044Google Scholar

    [12]

    Wu X 2004 Sol. Energy 77 803Google Scholar

    [13]

    Chander S, De A K, Dhaka M S 2018 Sol. Energy 174 757Google Scholar

    [14]

    Chander S, Dhaka M S 2016 Phys. E 84 112Google Scholar

    [15]

    Lee S H, Gupta A, Wang S, Compaan A D, McCandless B E 2005 Sol. Energy Mater. Sol. Cells 86 551Google Scholar

    [16]

    Chander S, Dhaka M S 2019 Sol. Energy 183 544Google Scholar

    [17]

    Rohatgi A, Ringel S A, Welch J, Meeks E, Pollard K, Erbil A, Summers C J, Meyers P V 1988 Sol. Energy 24 185

    [18]

    Luan L J, Gao L, Lv H H, Yu P F, Wang T, He Y, Zheng D 2020 Sci. Rep. 10 1Google Scholar

    [19]

    Wang S L, Lee S H, Gupta A 2004 MRS Proc. 836 L5.39Google Scholar

    [20]

    侯泽荣, 万磊, 白治中, 王德亮 2010 中国科学技术大学学报 40 718Google Scholar

    Hou Z R, W L, Bai Z Z, Wang D L 2010 J. Univ. Sci. Tech. Chin. 40 718Google Scholar

    [21]

    Olusola O I, Madugu M L, Ojo A A, Dharmadasa I M 2020 J. Mater. Sci. Mater. Electron. 31 22151Google Scholar

    [22]

    Shafaay B A 2014 J. Chem., Biol. Phys. Sci. 4 1

    [23]

    Gueddim A, Madjet M E, Zerroug S, Bouarissa N 2016 Opt. Quantum Electron. 48 551Google Scholar

    [24]

    Llchuk H, Zmiiovska E, Petrus R, Semkive I, Lopatynskyi I, Kashuba 2020 J. Nano-Electron. Phys. 12 01027Google Scholar

    [25]

    Cao A, Tan T T, Zhang H, Du Y, Sun Y, Zha G 2018 Phys. B 545 323Google Scholar

    [26]

    Merad A, Kanoun M, Merad G, Cibert J, Aourag H 2005 Mater. Chem. Phys. 92 333Google Scholar

    [27]

    Liu H X, Tang F L, Xue H T, Zhang Y, Cheng Y W, Feng Y D 2016 Chin. Phys. B 25 123101Google Scholar

    [28]

    Shenoy S, Tarafder K 2020 J. Phys. Condens. Matter 32 275501Google Scholar

    [29]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [30]

    Shi L B, Xu C Y, Yuan H K 2011 Phys. B 406 3187Google Scholar

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [32]

    Butler K T, Frost J M, Walsh A 2015 Mater. Horiz. 2 228Google Scholar

    [33]

    Wang J S, Tong S C, Tsai Y H, Tsai W J, Yang C S, Chang Y H, Shen J L 2015 J. Alloys Compd. 646 129Google Scholar

    [34]

    Kumar S G, Rao K S R K 2014 Energy Environ. Sci. 7 45Google Scholar

    [35]

    Cheng Y W, Tang F L, Xue H T, Liu H X, Gao B, Feng Y D 2016 Mater. Sci. Semicond. Process. 45 9Google Scholar

    [36]

    Momma K, Izumi F 2008 J. Appl. Crystallogr. 41 653Google Scholar

    [37]

    Guo Y, Xue Y, Geng C, Li C, Li X, Niu Y 2019 J. Phys. Chem. C 123 16075Google Scholar

    [38]

    Yin W J, Shi T, Yan Y 2015 J. Phys. Chem. C 119 5253Google Scholar

    [39]

    Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J 2006 Adv. Mater. 18 789Google Scholar

    [40]

    Sharma S, Devi N, Verma U P, RajaRam P 2011 Phys. B 406 4547Google Scholar

    [41]

    Dadsetani M, Pourghazi A 2006 Phys. Rev. B 73 195102Google Scholar

    [42]

    Gajdos M, Hummer K, Kresse G, Furthmueller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

  • [1] 王秀宇, 王涛, 崔雨昂, 吴溪广润, 王洋. 基于第一性原理研究杂质补偿对硅光电性能的影响.  , 2024, 73(11): 116301. doi: 10.7498/aps.73.20231814
    [2] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. 电场对GaN/g-C3N4异质结电子结构和光学性质影响的第一性原理研究.  , 2022, 71(9): 097301. doi: 10.7498/aps.71.20212261
    [3] 徐大庆, 赵子涵, 李培咸, 王超, 张岩, 刘树林, 童军. 不同价态Mn掺杂InN电子结构、磁学和光学性质的第一性原理研究.  , 2018, 67(8): 087501. doi: 10.7498/aps.67.20172504
    [4] 唐士惠, 操秀霞, 何林, 祝文军. 空位缺陷和相变对冲击压缩下蓝宝石光学性质的影响.  , 2016, 65(14): 146201. doi: 10.7498/aps.65.146201
    [5] 高敏, 舒文路, 叶强, 何林, 祝文军. 下地幔压力条件下(Mg0.97, Fe0.03)O方镁铁矿的光学性质.  , 2015, 64(11): 119101. doi: 10.7498/aps.64.119101
    [6] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究.  , 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [7] 段永华, 孙勇. (α, β , γ)-Nb5Si3电子结构和光学性质研究.  , 2012, 61(21): 217101. doi: 10.7498/aps.61.217101
    [8] 冯现徉, 逯瑶, 蒋雷, 张国莲, 张昌文, 王培吉. In掺杂ZnO超晶格光学性质的研究.  , 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [9] 逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲. Fe, S共掺杂SnO2材料第一性原理分析.  , 2012, 61(2): 023101. doi: 10.7498/aps.61.023101
    [10] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算.  , 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [11] 焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮. 闪锌矿GaN弹性性质、电子结构和光学性质外压力效应的理论研究.  , 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [12] 于峰, 王培吉, 张昌文. Al掺杂SnO2 材料电子结构和光学性质.  , 2011, 60(2): 023101. doi: 10.7498/aps.60.023101
    [13] 逯瑶, 王培吉, 张昌文, 蒋雷, 张国莲, 宋朋. 第一性原理研究In,N共掺杂SnO2材料的光电性质.  , 2011, 60(6): 063103. doi: 10.7498/aps.60.063103
    [14] 逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲. 第一性原理研究Fe掺杂SnO2材料的光电性质.  , 2011, 60(11): 113101. doi: 10.7498/aps.60.113101
    [15] 顾牡, 林玲, 刘波, 刘小林, 黄世明, 倪晨. M’型GdTaO4电子结构的第一性原理研究.  , 2010, 59(4): 2836-2842. doi: 10.7498/aps.59.2836
    [16] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究.  , 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [17] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算.  , 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [18] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究.  , 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [19] 刘建军. 掺Ga对ZnO电子态密度和光学性质的影响.  , 2010, 59(9): 6466-6472. doi: 10.7498/aps.59.6466
    [20] 于峰, 王培吉, 张昌文. N掺杂SnO2材料光电性质的第一性原理研究.  , 2010, 59(10): 7285-7290. doi: 10.7498/aps.59.7285
计量
  • 文章访问数:  7153
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-05
  • 修回日期:  2021-04-04
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回
Baidu
map