-
寻找尺寸小、稳定性高和易操控的纳米磁结构—磁斯格明子(magnetic skyrmion), 是发展下一代高密度、高速度和低能耗非易失性信息存储器件核心存储单元的关键.磁性斯格明子根据其拓扑产生机制, 可以由非中心对称结构诱导的DMI(Dzyaloshinskii–Moriya Interaction)作用项产生. 二维Janus结构具有两个不同面的原子层, 可以形成垂直内建电场, 打破中心空间反演对称性. 因此寻找具有本征磁性的二维Janus材料是研究新型磁存储的基础. 本文基于晶体材料数据库Materials Project中的1179种六角晶系ABC型Janus材料数据, 以其元素组分信息为特征描述符, 构建了随机森林, 梯度提升决策树, 极端梯度提升和极端随机树等四种机器学习模型, 基于上述模型对晶格常数、形成能和磁矩分类进行了预测, 并采用十折交叉验证法对模型进行了评估. 梯度提升决策树在磁矩分类预测显示出最高的精度和泛化能力. 最后, 基于上述模型对尚未发现的82018种二维Janus材料进行了预测, 筛选得到4024种具有热稳定性的高磁矩结构, 并基于第一性原理的方法对其中随机抽样的13种高磁矩结构进行了计算验证. 本研究为二维Janus材料磁矩分类和高通量筛选训练了有效的机器学习模型, 加速了二维 Janus 结构磁性的探索.Discovering the compact、stable and easily controllable nanoscale non-trivial topological magnetic structures---magnetic skyrmions,is the key to develop next-generation high-density, high-speed,and low-energy non-volatile information storage devices.Based on the topological generation mechanism,magnetic skyrmions could be generated through the Dzyaloshinskii–Moriya Interaction (DMI) induced by space-reversal symmetry broken.Two dimensional (2D) non-centrosymmetric Janus could generate vertical built-in electric fields to break spatial inversion symmetry. Therefore, seeking 2D Janus with intrinsic magnetism is fundamental to develop the novel chiral magnetic storage technologies.In this work, we combined detailed machine learning techniques and first-principles calculations to discover the magnetism of the unexplored 2D janus. we first collected 1179 2D hexagonal ABC-type Janus based on the Materials Project database, and used elemental composition as feature descriptors to construct four machine learning models: Random Forest (RF), Gradient Boosting Decision Trees (GBDT), Extreme Gradient Boosting (XGB), and Extra Trees (ET). These algorithms and models were constructed to predict lattice constants, formation energies, and magnetic moment, via hyperparameter optimization and ten-fold cross-validation. GBDT exhibits the highest accuracy and best prediction performance for magnetic moment classification. Subsequently, the collected data of 82,018 yet-undiscovered 2D Janus,were input into the trained models to generate 4,024 high magnetic moment 2D Janus with thermal stability. First-principles calculations were employed to validate random sample of 13 Janus with high magnetic moment. This study provides an effective machine learning framework for magnetic moment classification and high-throughput screening of 2D Janus, accelerating the exploration of magnetic properties in 2D Janus structures.
-
Keywords:
- machine learning /
- two-dimensional Janus materials /
- magnetic moment /
- first-principles calculations
-
图 4 晶格常数预测: 最优模型在十折交叉验证中的散点图. (a) Lattice a = b预测任务最优模型: 极端随机树, (b) Lattice c预测任务最优模型: 极端梯度提升
Fig. 4. Prediction of lattice constants: scatter plots for the optimal models in ten-fold cross-validation. (a) The optimal model for the lattice a=b prediction task:ET, (b) The optimal model for the lattice c prediction task:XGB.
表 1 不同训练任务中机器学习最优模型的超参数
Table 1. The hyperparameters of the optimal machine learning models in various training tasks.
模型 超参数 GBDT(磁矩分类) learning_rate = 0.01603011, max_depth = 5, n_estimators = 272, subsample = 0.69895067 GBDT(形成能) learning_rate = 0.02, max_depth = 6, n_estimators = 353, subsample = 0.93030056 ET(晶格常数a和b) max_depth = 10, max_features = 0.60, n_estimators = 100,
min_samples_leaf = 2, min_samples_split = 4XGB(晶格常数c) learning_rate = 0.02, n_estimators = 300, max_depth = 5,
subsample = 0.8, colsample_bytree = 0.49613519表 2 晶格常数预测
Table 2. Prediction of lattice constants.
模型 Lattice a=b Lattice c MAE RMSE $R^2$ MAE RMSE $R^2$ RF 0.5485 0.8104 0.7375 0.6491 1.0001 0.6872 GBDT 0.4477 0.7350 0.7829 0.6679 0.9924 0.6923 XGB 0.5427 0.7968 0.7462 0.5953 0.9474 0.7186 ET 0.3469 0.6808 0.8137 0.6534 1.0103 0.6817 表 3 形成能预测: 四种机器学习模型的评价指标
Table 3. The Prediction of formation energy: evaluation metrics of four machine learning models.
模型 MAE RMSE $R^2$ RF 0.1054 0.1697 0.8671 GBDT 0.0798 0.1411 0.9070 XGB 0.0959 0.1533 0.8930 ET 0.1120 0.1701 0.8657 表 4 磁矩分类预测: 四种机器学习模型的评价指标
Table 4. Prediction of magnetic moment classification.: evaluation metrics of four machine learning models.
模型 Accuracy Precision Recall F1 score RF 0.8770 0.8459 0.7636 0.7862 GBDT 0.8948 0.8498 0.8182 0.8263 XGB 0.8762 0.8398 0.7697 0.7883 ET 0.8795 0.8392 0.7778 0.7965 表 5 13种结构优化后的六角晶系ABC型Janus材料的晶格常数, 形成能和磁矩
Table 5. Optimized lattice constants, formation energies and magnetic moments of 13 two-dimensional hexagonal ABC-type Janus materials.
Formula Lattice constants Formation energy (eV) $ |\mu| $ ($ \mu_B $) a = b(Å) c(Å) A B C ErFeTb 3.35 18.25 –2.02 2.51 3.03 6.24 FeNO 2.92 15.00 –11.87 1.17 0.08 0.47 HoRuSr 4.90 18.79 –6.66 3.79 0.02 0.05 DyOsSr 4.18 18.87 –6.89 4.89 0.00 0.13 EuSbSr 5.43 18.69 –5.53 6.85 0.01 0.05 HoIrSr 4.58 18.79 –7.24 3.72 0.00 0.05 LiUZn 2.89 18.13 –0.44 0.00 1.65 0.01 PuSZn 4.52 18.13 –6.75 5.61 0.10 0.01 GdKU 7.46 18.13 –2.39 7.33 0.00 2.96 LuNbTi 3.02 18.13 –1.76 0.02 0.28 1.67 GdHfSe 5.03 18.93 –8.46 7.33 0.34 0.02 NaTbZn 4.65 18.69 –1.87 0.02 6.00 0.00 HoNpSr 3.69 18.46 –1.80 3.81 4.38 0.08 -
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Zhang Z W, Lang Y F, Zhu H P, Li B, Zhao Y Q, Wei B, Zhou W X 2024 Phys. Rev. Appl. 21 064012Google Scholar
[3] Liu B, Feng X X, Long M Q, Cai M Q, Yang J L 2022 Phys. Rev. Appl. 18 054036Google Scholar
[4] Xiong X J, Zhong F, Zhang Z W, Chen F, Luo J L, Zhao Y Q, Zhu H P, Jiang S L 2024 Acta Phys. Sin. 73 137101Google Scholar
[5] Zhao Y Q, Liu Z S, Nie G Z, Zhu Z H, Chai Y F, Wang J N, Cai M Q, Jiang S L 2021 Appl. Phys. Lett. 118 173104Google Scholar
[6] Lang Y F, Zou D F, Xu Y, Jiang S L, Zhao Y Q, Ang Y S 2024 Appl. Phys. Lett. 124 052903Google Scholar
[7] Liao C S, Ding Y F, Zhao Y Q, Cai M Q 2021 Appl. Phys. Lett. 119 182903Google Scholar
[8] Tan W, Zhang Z W, Zhou X Y, Yu Z L, Zhao Y Q, Jiang S L, Ang Y S 2024 Phys. Rev. Mater. 8 094414Google Scholar
[9] Liang J H, Wang W W, Du H F, Hallal A, Garcia K, Chshiev M, Fert A, Yang H X 2020 Phys. Rev. B 101 184401Google Scholar
[10] Zhang S Q, Xu R Z, Luo N N, Zou X L 2021 Nanoscale 13 1398Google Scholar
[11] Dai C Y, He P, Luo L X, Zhan P X, Guan B, Zheng J 2023 Sci. China Mater. 66 859Google Scholar
[12] Wang P, Zong Y X, Wen H Y, Xia J B, Wei Z M 2021 Acta Phys. Sin. 70 026801Google Scholar
[13] Ren K, Wang K, Zhang G 2022 ACS Appl. Electron. Mater. 4 4507Google Scholar
[14] Peng Z L, Huang J X, Guo Z G 2021 Nanoscale 13 18839Google Scholar
[15] Zhang L, Yang Z J F, Gong T, Pan R K, Wang H D, Guo Z N, Zhang H, Fu X 2020 J. Mater. Chem. A 8 8813Google Scholar
[16] Vafaeezadeh M, Thiel W R 2022 Angew. Chem. Int. Edit. 6 1 e202206403
[17] Mukherjee T, Kar S, Ray S 2022 J. Mater. Res. 37 3418Google Scholar
[18] Li C Q, An Y K 2022 Phys. Rev. B 106 115417Google Scholar
[19] Zhang L, Zhao Y, Liu Y Q, Gao G Y 2023 Nanoscale 15 18910Google Scholar
[20] Xu L J, Wan W H, Peng Y R, Ge Y F, Liu Y 2024 Ann. Phys. 536 2300388Google Scholar
[21] Gao Z Y, Mao G Y, Chen S Y, Bai Y, Gao P, Wu C C, Gates I D, Yang W J, Ding X L, Yao J X 2022 Phys. Chem. Chem. Phys. 24 3460Google Scholar
[22] Liu H, Sun J T, Liu M, Meng S 2018 J. Phys. Chem. Lett. 9 6709Google Scholar
[23] Nelson J, Sanvito S 2019 Phys. Rev. Mater. 3 104405Google Scholar
[24] Belot J F, Taufour V, Sanvito S, Hart G L 2023 Appl. Phys. Lett. 123 042405Google Scholar
[25] Miyazato I, Tanaka Y, Takahashi K 2018 J. Phys.: Condens. Matter 30 06L
[26] Lu S H, Zhou Q H, Guo Y L, Zhang Y H, Wu Y L, Wang J L 2020 Adv. Mater. 32 2002658Google Scholar
[27] Ma X Y, Lyu H Y, Hao K R, Zhao Y M, Qian X F, Yan Q B, Su G 2021 Sci. Bull. 66 233Google Scholar
[28] Huang T, Yang Z X, Li L, Wan H, Leng C, Huang G F, Hu W Y, Huang W Q 2024 J. Phys. chem. Lett. 15 2428Google Scholar
[29] Chaney G, Ibrahim A, Ersan F, Çakır D, Ataca C 2021 ACS Appl. Mater. Interfaces 13 36388Google Scholar
[30] Yan X H, Zheng J M, Zhao X, Zhao P J, Guo P, Jiang Z Y 2024 Phys. Status Solidi Rapid Res. Lett. 18 2300468Google Scholar
[31] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar
[32] Chen P Y, Lam C H, Edmondson B, Posadas A B, Demkov A A, Ekerdt J G 2019 J. Vac. Sci. Technol. A 37 050902Google Scholar
[33] Khushi M, Shaukat K, Alam T M, Hameed I A, Uddin S, Luo S, Yang X, Reyes M C 2021 IEEE Access 9 109960Google Scholar
[34] Ward L, Dunn A, Faghaninia A, Zimmermann N E, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson K A, Snyder G J, Foster I, Jain A 2018 Comp. Mater. Sci. 152 60Google Scholar
[35] Chen J, Song Y Y, Li S Z, Que Z X, Zhang W B 2023 Sci. China Technol. Sci. 1 011002
[36] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E 2011 J. Mach. Learn. Res. 12 2825
[37] Ester M, Kriegel H P, Xu X 2023 Geogr. Anal. 55 207Google Scholar
[38] Wu J, Chen X Y, Zhang H, Xiong L D, Lei H, Deng S H 2019 J. Electron. Sci. Technol. 17 26
[39] Ma Q Y, Wan W H, Ge Y F, Li Y M, Liu Y 2022 J. Magn. Magn. Mater. 605 172314
[40] Yin W J, Tan H J, Ding P J, Wen B, Li X B, Teobaldi G, Liu L M 2021 Mater. Adv. 2 7543Google Scholar
计量
- 文章访问数: 263
- PDF下载量: 23
- 被引次数: 0