搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶胶凝胶自燃烧法合成金属与合金材料研究进展

张新伟 华正和 蒋毓文 杨绍光

引用本文:
Citation:

溶胶凝胶自燃烧法合成金属与合金材料研究进展

张新伟, 华正和, 蒋毓文, 杨绍光

Progress in sol-gel autocombustion synthesis of metals and alloys

Zhang Xin-Wei, Hua Zheng-He, Jiang Yu-Wen, Yang Shao-Guang
PDF
导出引用
  • 本文综述了溶胶凝胶自燃烧法制备金属与合金材料的研究进展, 详细介绍了该方法的实验原理和技术路线, 通过实例介绍了该方法在制备金属和合金材料中的具体应用. 通过这一系列的工作介绍, 我们证实可以把传统的溶胶凝胶法制备氧化物材料的技术拓展到金属与合金材料的制备, 希望能够对材料研究的实验工作有所帮助.
    This paper is an overview of the progress of sol-gel autocombustion synthesis of metals and metal alloys. Sol-gel is a convenient method to synthesize a variety of oxides by mixing of different elements at an atomic level. Autocombustion synthesis is a self-sustaining process caused by the heat generated from its exothermic reaction. By combining these two methods, the sol-gel autocombustion method is introduced in the synthesis of metals and metal alloys. The experimental principle and technological route are introduced in detail in this review. By using metal nitrate, citric acid etc. as starting materials, the dried gels are prepared through sol-gel routine. Under the protection of inert gas, the autocombustion could be activated at low temperature in a tube furnace. After the autocombustion was activated, the gel burned violently, and a large amount of white gas was refleased. During heating the gel, mass spectrum shows that the H2, CO and CH4 areflevidently identified near the combustion temperature. They are well known reducing agents, which can be used in the redox reaction for synthesizing metals from oxides. Based on the data obtained from the TG-DTA and mass spectrum analysis, it is speculated that there are mainly five reactions appearing during the burning of the gel at high temperature: exothermic reaction between fuel and oxidant; metal oxide(s) formation by decomposition of the nitrate(s); generation of CH4, CO and H2 by the decomposition of CHx containing groups of complexing agent; exothermic reaction between CH4/CO/H2 and oxidant; the reduction of metals from their corresponding metal oxides by CH4 and H2 in nascent product. The application of this method to the synthesis of metals and metal alloys is shown by realized examples. This method shows many advantages in the synthesis of metals, such as simple apparatus, inexpensive raw materials, a relatively simple preparation process, and fine powder products with high homogeneity. Moreover, very low temperature is required to activate the reaction, and then the combustion can continue to take place without needing additional energy supply. This method has potential applications in experimental material reflearches.
    • 基金项目: 江苏省自然科学基金(批准号: BK2009245)和国家自然科学基金(批准号: 61176087)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2009245), and the National Natural Science Foundation of China (Grant No. 61176087).
    [1]

    Shin S J, Kim Y H, Kim C W, Cha H G, Kim Y J, Kang Y S 2007 Current Applied Physics 7 404

    [2]

    Sun Y P, Li X Q, Cao J, Zhang W X, Wang H P 2006 Advances in Colloid and Interface Science 120 47

    [3]

    Inaba M, Awa M, Akiyoshi E, Otake Y 1986 Journal of Materials Science Letters 5 16

    [4]

    Gleiter H 1989 Progress in Materials Science 33 223

    [5]

    Hench L L, West j K 1990 Chemical Reviews 90 33

    [6]

    Lu Y F, Ganguli R, Drewien C A, Anderson M T, Brinker C J, Gong W L, Guo Y X, Soyez H, Dunn B, Huang M H, Zink J I 1997 Nature 389 6649

    [7]

    Lu Y, Yin Y D, Mayers B T, Xia Y N 2002 Nano Letters 2 183

    [8]

    Murata K, Aoki M, Suzuki T, Harada T, Kawabata H, Komori T, Ohseto F, Ueda K, Shinkai S 1994 Journal of the American Chemical Society 116 6664

    [9]

    Moore J J, Feng H J 1995 Progress in Materials Science 39 243

    [10]

    Kecskes L J, Niiler A 1989 Journal of the American Ceramic Society 72 655

    [11]

    Rice R W 1991 Journal of Materials Science 26 6533

    [12]

    Mukasyan A, Dinka P 2007 International Journal of Self-Propagating High-Temperature Synthesis 16 23

    [13]

    Roy S, Dassharma A, Roy S N, Maiti H S 1993 Journal of Materials Research 8 2761

    [14]

    Chakrabarti N, Maiti H S 1997 Materials Letters 30 169

    [15]

    Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C 2011 Materials Research Bulletin 46 2204

    [16]

    Ahlawat A, Sathe V G, Reddy V R, Gupta A 2011 Journal of Magnetism and Magnetic Materials 323 2049

    [17]

    Hou J G, Qu Y F, Ma W B, Shan D 2007 Journal of Materials Science 42 6787

    [18]

    Jiang Y W 2012 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese) [蒋毓文 2012 博士学位论文(南京: 南京大学)]

    [19]

    Rice R W 1991 Journal of Materials Science 26 6533

    [20]

    Wu K H, Ting T H, Li M C, Ho W D 2006 Journal of Magnetism and Magnetic Materials 298 25

    [21]

    Pathak L C, Singh T B, Das S, Verma A K, Ramachandrarao P 2002 Materials Letters 57 380

    [22]

    Pradeep A, Priyadharisini P, Chandrasekaran G 2008 Materials Chemistry and Physics 112 572

    [23]

    Yue Z X, Guo W Y, Zhou J, Gui Z L, Li L T 2004 Journal of Magnetism and Magnetic Materials 270 216

    [24]

    Srinivasan G, Seehra M 1984 Phys. Rev. B 29 6295

    [25]

    Jiang Y W, Yang S G, Hua Z H, Huang H B 2009 Angewandte Chemie 121 8681

    [26]

    Hua Z H, Deng Y, Li K N, Yang S G 2012 Nanoscale Research Letters 7 129

    [27]

    Deshpande K, Mukasyan A, Varma A, 2004 Chem. Mater., 16 4896

    [28]

    Hua Z H, Cao Z W, Deng Y, Jiang Y W, Yang S G 2011 Materials Chemistry and Physics 126 542

    [29]

    Denton A R, Ashcroft N W 1991 Physical Review A 43 3161

    [30]

    Li P Y, Jiang W, Li F S 2013 Chem. Lett. 42 816

    [31]

    Li P Y, Zhang P, Li F S, Jiang W, Cao Z H 2013 J. Sol-Gel Sci. Technol. 68 261

    [32]

    Li P Y, Jiang W, Li F S 2013 J. Sol-Gel Sci. Technol. 66 533

    [33]

    Li P Y, Syed X, Meng X K 2012 Journal of alloys and compounds 512 47

    [34]

    Li P Y, Cao Z H, Meng X K 2012 Dalton Trans 41 12101

    [35]

    Kumar A, Wolf E E, Mukasyan A S 2011 AIChE Journal 57 2207

    [36]

    Liu Q X, Wang C X, Zhang W, Wang G W 2003 Chemical Physics Letters 382 1

    [37]

    Jiang Y W, Yang S G, Hua Z H, Gong J F, Zhao X N 2011 Materials reflearch bulletin 46 2531

    [38]

    Ma E 2005 Progress in Materials Science 50 413

    [39]

    Murray J L 1984 Metallurgical Transactions a-Physical Metallurgy and Materials Science 15 261

    [40]

    Xu J, White T, Li P, He C H, Han Y F 2010 J. Am. Chem. Soc. 132 13172

    [41]

    Kucheyev S O, Hayes J R, Biener J, Huser T, Talley C E, Hamza AV 2006 Appl. Phys. Lett. 89 053102

    [42]

    Biener J, Hodge A M, Hamza A V, Hsiung L M, Satcher J H 2005 J. Appl. Phys. 97 024301

    [43]

    Chandrappa G T, Steunou N, Livage J 2002 Nature 416 702

    [44]

    Arabatzis I M, Falara P 2003 Nano. Lett. 3 249

    [45]

    Carn F, Saadaoui H, Masse P, Ravaine S, Julian-Lopez B, Sanchez C, Deleuze H, Talham D R, Backov R 2006 Langmuir 22 5469

    [46]

    Bao Z H, Ernst E M, Yoo S, Sandhage K H 2009 Adv. Mater. 21 474

    [47]

    Gao D Q, Yang G J, Zhu Z H, Zhang J, Yang Z L, Zhang Z P, Xue D S 2012 Journal of Materials Chemistry 22 9462

    [48]

    Fang X S, Ye C H, Zhang L D, Wang Y H, Wu Y C 2005 Advanced Functional Materials 15 63

    [49]

    Ye C H, Fang X S, Li G H, Zhang L D 2004 Applied Physics Letters 85 3035

    [50]

    Kim M R, Park S Y, Jang D J 2010 Journal of Physical Chemistry C 114 6452

    [51]

    Li Y C, Ye M F, Yang C H, Li X H, Li Y F 2005 Advanced Functional Materials 15 433

    [52]

    Jiang Y W, Gong J F, Yang S H, Lan C Y, Yang S G 2012 Materials Research Innovations VOL 16 257

    [53]

    Jiang Y W, Lan C Y, Yang S H, Yang S G 2012 Materials Letters 89 269

    [54]

    Yang S G, Jiang Y W, Hua Z H, Huang H B 2009 CN Patent ZL2009 1 0030207 2

    [55]

    Warren S C, Perkins M R, Adams A M, Kamperman M, Burns A A, Arora H, Herz E, Suteewong T, Sai H, Li Z 2012 Nature Materials 11 460

    [56]

    Xu L Q, Huang H F, Tang S L, Chen L Y, Xie R, Xia W B, Wei J, Zhong W, Du Y W 2014 J. Sol-Gel Sci. Technol. 69 130

    [57]

    Xu L Q, Chen L Y, Huang H F, Xie R, Xia W B, Wei J, Zhong W, Tang S L, Du Y W 2014 Journal of Alloys and Compounds 593 93

    [58]

    Yang S H, Liu S J, Jiang Y W, Yang S G 2012 Materials Research Innovations 16 47

    [59]

    Shi L, Zeng C Y, Jin Y Z, Wang T J, Tsubaki N 2012 Catalysis Science & Technology 2 2569

    [60]

    Shi L, Yang R Q, Tao K, Yoneyama Y, Tan Y S, Tsubaki N 2012 Catalysis Today 185 54

    [61]

    Shi L, Jin Y Z, Xing C, Zeng C Y, Kawabata T, Imai K, Matsuda K, Tan Y S, Tsubaki N 2012 Applied Catalysis A: General 435-436 217

    [62]

    Pienluphon R, Shi L, Sun J, Niu W Q, Lu P, Zhu P F, Vitidsant T, Yoneyama Y, Chen Q J, Tsubaki N 2014 Catalysis Science & Technology 4 3099

    [63]

    Tao K, Zhou S H, Zhang Q J, Kong C L, Ma Q X, Tsubaki N Chen L 2013 RSC Advances 3 22285

  • [1]

    Shin S J, Kim Y H, Kim C W, Cha H G, Kim Y J, Kang Y S 2007 Current Applied Physics 7 404

    [2]

    Sun Y P, Li X Q, Cao J, Zhang W X, Wang H P 2006 Advances in Colloid and Interface Science 120 47

    [3]

    Inaba M, Awa M, Akiyoshi E, Otake Y 1986 Journal of Materials Science Letters 5 16

    [4]

    Gleiter H 1989 Progress in Materials Science 33 223

    [5]

    Hench L L, West j K 1990 Chemical Reviews 90 33

    [6]

    Lu Y F, Ganguli R, Drewien C A, Anderson M T, Brinker C J, Gong W L, Guo Y X, Soyez H, Dunn B, Huang M H, Zink J I 1997 Nature 389 6649

    [7]

    Lu Y, Yin Y D, Mayers B T, Xia Y N 2002 Nano Letters 2 183

    [8]

    Murata K, Aoki M, Suzuki T, Harada T, Kawabata H, Komori T, Ohseto F, Ueda K, Shinkai S 1994 Journal of the American Chemical Society 116 6664

    [9]

    Moore J J, Feng H J 1995 Progress in Materials Science 39 243

    [10]

    Kecskes L J, Niiler A 1989 Journal of the American Ceramic Society 72 655

    [11]

    Rice R W 1991 Journal of Materials Science 26 6533

    [12]

    Mukasyan A, Dinka P 2007 International Journal of Self-Propagating High-Temperature Synthesis 16 23

    [13]

    Roy S, Dassharma A, Roy S N, Maiti H S 1993 Journal of Materials Research 8 2761

    [14]

    Chakrabarti N, Maiti H S 1997 Materials Letters 30 169

    [15]

    Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C 2011 Materials Research Bulletin 46 2204

    [16]

    Ahlawat A, Sathe V G, Reddy V R, Gupta A 2011 Journal of Magnetism and Magnetic Materials 323 2049

    [17]

    Hou J G, Qu Y F, Ma W B, Shan D 2007 Journal of Materials Science 42 6787

    [18]

    Jiang Y W 2012 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese) [蒋毓文 2012 博士学位论文(南京: 南京大学)]

    [19]

    Rice R W 1991 Journal of Materials Science 26 6533

    [20]

    Wu K H, Ting T H, Li M C, Ho W D 2006 Journal of Magnetism and Magnetic Materials 298 25

    [21]

    Pathak L C, Singh T B, Das S, Verma A K, Ramachandrarao P 2002 Materials Letters 57 380

    [22]

    Pradeep A, Priyadharisini P, Chandrasekaran G 2008 Materials Chemistry and Physics 112 572

    [23]

    Yue Z X, Guo W Y, Zhou J, Gui Z L, Li L T 2004 Journal of Magnetism and Magnetic Materials 270 216

    [24]

    Srinivasan G, Seehra M 1984 Phys. Rev. B 29 6295

    [25]

    Jiang Y W, Yang S G, Hua Z H, Huang H B 2009 Angewandte Chemie 121 8681

    [26]

    Hua Z H, Deng Y, Li K N, Yang S G 2012 Nanoscale Research Letters 7 129

    [27]

    Deshpande K, Mukasyan A, Varma A, 2004 Chem. Mater., 16 4896

    [28]

    Hua Z H, Cao Z W, Deng Y, Jiang Y W, Yang S G 2011 Materials Chemistry and Physics 126 542

    [29]

    Denton A R, Ashcroft N W 1991 Physical Review A 43 3161

    [30]

    Li P Y, Jiang W, Li F S 2013 Chem. Lett. 42 816

    [31]

    Li P Y, Zhang P, Li F S, Jiang W, Cao Z H 2013 J. Sol-Gel Sci. Technol. 68 261

    [32]

    Li P Y, Jiang W, Li F S 2013 J. Sol-Gel Sci. Technol. 66 533

    [33]

    Li P Y, Syed X, Meng X K 2012 Journal of alloys and compounds 512 47

    [34]

    Li P Y, Cao Z H, Meng X K 2012 Dalton Trans 41 12101

    [35]

    Kumar A, Wolf E E, Mukasyan A S 2011 AIChE Journal 57 2207

    [36]

    Liu Q X, Wang C X, Zhang W, Wang G W 2003 Chemical Physics Letters 382 1

    [37]

    Jiang Y W, Yang S G, Hua Z H, Gong J F, Zhao X N 2011 Materials reflearch bulletin 46 2531

    [38]

    Ma E 2005 Progress in Materials Science 50 413

    [39]

    Murray J L 1984 Metallurgical Transactions a-Physical Metallurgy and Materials Science 15 261

    [40]

    Xu J, White T, Li P, He C H, Han Y F 2010 J. Am. Chem. Soc. 132 13172

    [41]

    Kucheyev S O, Hayes J R, Biener J, Huser T, Talley C E, Hamza AV 2006 Appl. Phys. Lett. 89 053102

    [42]

    Biener J, Hodge A M, Hamza A V, Hsiung L M, Satcher J H 2005 J. Appl. Phys. 97 024301

    [43]

    Chandrappa G T, Steunou N, Livage J 2002 Nature 416 702

    [44]

    Arabatzis I M, Falara P 2003 Nano. Lett. 3 249

    [45]

    Carn F, Saadaoui H, Masse P, Ravaine S, Julian-Lopez B, Sanchez C, Deleuze H, Talham D R, Backov R 2006 Langmuir 22 5469

    [46]

    Bao Z H, Ernst E M, Yoo S, Sandhage K H 2009 Adv. Mater. 21 474

    [47]

    Gao D Q, Yang G J, Zhu Z H, Zhang J, Yang Z L, Zhang Z P, Xue D S 2012 Journal of Materials Chemistry 22 9462

    [48]

    Fang X S, Ye C H, Zhang L D, Wang Y H, Wu Y C 2005 Advanced Functional Materials 15 63

    [49]

    Ye C H, Fang X S, Li G H, Zhang L D 2004 Applied Physics Letters 85 3035

    [50]

    Kim M R, Park S Y, Jang D J 2010 Journal of Physical Chemistry C 114 6452

    [51]

    Li Y C, Ye M F, Yang C H, Li X H, Li Y F 2005 Advanced Functional Materials 15 433

    [52]

    Jiang Y W, Gong J F, Yang S H, Lan C Y, Yang S G 2012 Materials Research Innovations VOL 16 257

    [53]

    Jiang Y W, Lan C Y, Yang S H, Yang S G 2012 Materials Letters 89 269

    [54]

    Yang S G, Jiang Y W, Hua Z H, Huang H B 2009 CN Patent ZL2009 1 0030207 2

    [55]

    Warren S C, Perkins M R, Adams A M, Kamperman M, Burns A A, Arora H, Herz E, Suteewong T, Sai H, Li Z 2012 Nature Materials 11 460

    [56]

    Xu L Q, Huang H F, Tang S L, Chen L Y, Xie R, Xia W B, Wei J, Zhong W, Du Y W 2014 J. Sol-Gel Sci. Technol. 69 130

    [57]

    Xu L Q, Chen L Y, Huang H F, Xie R, Xia W B, Wei J, Zhong W, Tang S L, Du Y W 2014 Journal of Alloys and Compounds 593 93

    [58]

    Yang S H, Liu S J, Jiang Y W, Yang S G 2012 Materials Research Innovations 16 47

    [59]

    Shi L, Zeng C Y, Jin Y Z, Wang T J, Tsubaki N 2012 Catalysis Science & Technology 2 2569

    [60]

    Shi L, Yang R Q, Tao K, Yoneyama Y, Tan Y S, Tsubaki N 2012 Catalysis Today 185 54

    [61]

    Shi L, Jin Y Z, Xing C, Zeng C Y, Kawabata T, Imai K, Matsuda K, Tan Y S, Tsubaki N 2012 Applied Catalysis A: General 435-436 217

    [62]

    Pienluphon R, Shi L, Sun J, Niu W Q, Lu P, Zhu P F, Vitidsant T, Yoneyama Y, Chen Q J, Tsubaki N 2014 Catalysis Science & Technology 4 3099

    [63]

    Tao K, Zhou S H, Zhang Q J, Kong C L, Ma Q X, Tsubaki N Chen L 2013 RSC Advances 3 22285

  • [1] 樊晓筝, 李怡莲, 吴怡, 陈俊彩, 徐国亮, 安义鹏. 二维磁性半导体笼目晶格Nb3Cl8单层的磁性及自旋电子输运性质.  , 2023, 72(24): 247503. doi: 10.7498/aps.72.20231163
    [2] 姜舟, 蒋雪, 赵纪军. 二维kagome晶格过渡金属酞菁基异质结的电子性质.  , 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [3] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测.  , 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [4] 王贺岩, 高怡帆, 廖家宝, 陈俊彩, 李怡莲, 吴怡, 徐国亮, 安义鹏. 二维NiBr2单层自旋电子输运以及光电性质.  , 2022, 71(9): 097502. doi: 10.7498/aps.71.20212384
    [5] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控.  , 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [6] 唐贵德, 李壮志, 马丽, 吴光恒, 胡凤霞. 典型磁性材料价电子结构研究面临的机遇与挑战.  , 2020, 69(2): 027501. doi: 10.7498/aps.69.20191655
    [7] 曹永泽, 赵越. 交变力磁力显微镜: 在三维空间同时观测静态和动态磁畴.  , 2019, 68(16): 168502. doi: 10.7498/aps.68.20190510
    [8] 陈敏, 万婷, 王征, 罗朝明, 刘靖. 宽绝对禁带的一维磁性光子晶体结构.  , 2017, 66(1): 014204. doi: 10.7498/aps.66.014204
    [9] 邹超, 徐智谋, 马智超, 武兴会, 彭静. 钛酸锶钡纳米管的制备及其红外吸收性能研究.  , 2015, 64(11): 118101. doi: 10.7498/aps.64.118101
    [10] 惠忆聪, 王春齐, 黄小忠. 基于电阻型频率选择表面的宽带雷达超材料吸波体设计.  , 2015, 64(21): 218102. doi: 10.7498/aps.64.218102
    [11] 王庆宝, 张仲, 徐锡金, 吕英波, 张芹. N, Fe, La三掺杂锐钛矿型TiO2能带调节的理论与实验研究.  , 2015, 64(1): 017101. doi: 10.7498/aps.64.017101
    [12] 周卓辉, 刘晓来, 黄大庆, 康飞宇. 一种基于十字镂空结构的低频超材料吸波体的设计与制备.  , 2014, 63(18): 184101. doi: 10.7498/aps.63.184101
    [13] 何琼, 许向东, 温粤江, 蒋亚东, 敖天宏, 樊泰君, 黄龙, 马春前, 孙自强. 溶胶凝胶制备氧化钒薄膜的生长机理及光电特性.  , 2013, 62(5): 056802. doi: 10.7498/aps.62.056802
    [14] 胡艳春, 王艳文, 张克磊, 王海英, 马恒, 路庆凤. 空穴掺杂Sr2FeMoO6的晶体结构及磁性研究.  , 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [15] 吴忠浩, 徐明, 段文倩. Fe掺杂对溶胶凝胶法制备的ZnO: Ni薄膜结构及发光特性的影响.  , 2012, 61(13): 137502. doi: 10.7498/aps.61.137502
    [16] 徐国成, 潘 玲, 关庆丰, 邹广田. 非晶钛酸铋的晶化过程.  , 2006, 55(6): 3080-3085. doi: 10.7498/aps.55.3080
    [17] 邵元智, 钟伟荣, 任 山, 蔡志苏, 龚 雷. 纳米团聚生长的多重分形谱.  , 2005, 54(7): 3290-3296. doi: 10.7498/aps.54.3290
    [18] 刘江涛, 周云松, 王艾玲, 姜宏伟, 郑 鹉. 三明治结构与同轴电缆结构磁性材料巨磁阻抗效应的理论研究.  , 2003, 52(11): 2859-2864. doi: 10.7498/aps.52.2859
    [19] 王玉霞, 郭震, 何海平, 曹颖, 汤洪高. 在Si(111)上用有机溶胶凝胶甩膜热解法制备(0001)定向的6H-SiC薄膜.  , 2001, 50(2): 256-261. doi: 10.7498/aps.50.256
    [20] 谢大弢, 吴瑾光, 马 刚, 闫文飞, 周维金, 徐光宪, 徐端夫, 陶 靖, 秦国刚. 用溶胶-凝胶方法制备Tb3+掺杂的硅基发光材料.  , 1999, 48(9): 1773-1780. doi: 10.7498/aps.48.1773
计量
  • 文章访问数:  8449
  • PDF下载量:  644
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-30
  • 修回日期:  2015-02-17
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map