Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe

Luan Li-Jun He Yi Wang Tao Liu Zong-Wen

Citation:

First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe

Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen
PDF
HTML
Get Citation
  • CdS/CdMnTe heterojunction is the core of photoelectric conversion of CdMnTe film solar cells, whose interface properties have an important influence on the cell efficiency. In this study, the first-principles calculation method based on density functional theory is used to build the surface model for each of the CdS (002) and the CdMnTe (111) and the model of CdS/CdMnTe heterojunction with Mn atoms occupying different positions, and to analyze their electronic properties and optical properties. The results show that the lattice mismatch of the CdS/CdMnTe heterojunction is about 3.5%, the atomic positions and bond lengths of the interface change slightly after relaxation. The density of states shows that there is no interface state near the Fermi level in CdS/CdMnTe interface. Besides, the atoms at CdS/CdMnTe interface are hybridized, which can enhance the interface bonding. The differential charge density analyses indicate that the charge transfer mainly occurs at the interface, and electrons transfer from CdMnTe to CdS. The optical analysis shows that CdS/CdMnTe heterojunction mainly absorbs ultraviolet light, and the absorption coefficient can reach 105 cm–1. However, the optical properties of heterojunctions with different Mn atom positions are slightly different. In a range of 200–250 nm, the absorption coefficient of the heterojunction with Mn atom in the middle layer is larger, but in a range of 250–900 nm, the absorption peak of the heterojunction with Mn atom in the interface layer is higher. The results in this paper can provide some references for improving the photoelectric conversion efficiency of stacked solar cells through the reasonable construction of the heterojunction model and the analysis of the interface photoelectric performance, which is beneficial to the experimental research of multi-band gap heterojunction.
      Corresponding author: Luan Li-Jun, nmllj050@chd.edu.cn
    • Funds: Project supported by the Major Project of International Scientific and Technological Cooperation Plan of Shaanxi Province, China (Grant No. 2020KWZ-008)
    [1]

    朱建国, 孙小松, 李卫 2007 电子与光电子材料 (北京: 国防工业出版社) 第125页

    Zhu J G, Sun X S, Li W 2007 Electronic and Optoelectronic Materials (Beijing: Defense Industry Press) p125 (in chinese)

    [2]

    Miles R W, Hynes K M, Forbes I 2005 Prog. Cryst. Growth Charact. Mater. 51 1Google Scholar

    [3]

    Mishima T, Taguchi M, Sakata H, Maruyama E 2011 Sol. Energy Mater. Sol. Cells 95 18Google Scholar

    [4]

    Jordan D, Nagle J P 1994 Prog. Photovoltaics 2 171Google Scholar

    [5]

    Cheng Y J, Yang S H, Hsu C S 2009 Chem. Rev. 109 5868Google Scholar

    [6]

    Mora-Seró I, Bisquert J 2010 J. Phys. Chem. Lett. 1 3046Google Scholar

    [7]

    Zhao J 2004 Sol. Energy Mater. Sol. Cells 82 53Google Scholar

    [8]

    Cojocaru-Miredin O, Choi P, Wuerz R, Raabe D 2011 Appl. Phys. Lett. 98 73Google Scholar

    [9]

    Yang L, Xuan Y, Tan J 2011 Opt. Express 19 A1165Google Scholar

    [10]

    Chopra K L, Paulson P D, Dutta V 2004 Prog. Photovoltaics 12 69Google Scholar

    [11]

    Zhang K, Guo H 2017 J. Mater. Sci. Mater. Electron. 28 17044Google Scholar

    [12]

    Wu X 2004 Sol. Energy 77 803Google Scholar

    [13]

    Chander S, De A K, Dhaka M S 2018 Sol. Energy 174 757Google Scholar

    [14]

    Chander S, Dhaka M S 2016 Phys. E 84 112Google Scholar

    [15]

    Lee S H, Gupta A, Wang S, Compaan A D, McCandless B E 2005 Sol. Energy Mater. Sol. Cells 86 551Google Scholar

    [16]

    Chander S, Dhaka M S 2019 Sol. Energy 183 544Google Scholar

    [17]

    Rohatgi A, Ringel S A, Welch J, Meeks E, Pollard K, Erbil A, Summers C J, Meyers P V 1988 Sol. Energy 24 185

    [18]

    Luan L J, Gao L, Lv H H, Yu P F, Wang T, He Y, Zheng D 2020 Sci. Rep. 10 1Google Scholar

    [19]

    Wang S L, Lee S H, Gupta A 2004 MRS Proc. 836 L5.39Google Scholar

    [20]

    侯泽荣, 万磊, 白治中, 王德亮 2010 中国科学技术大学学报 40 718Google Scholar

    Hou Z R, W L, Bai Z Z, Wang D L 2010 J. Univ. Sci. Tech. Chin. 40 718Google Scholar

    [21]

    Olusola O I, Madugu M L, Ojo A A, Dharmadasa I M 2020 J. Mater. Sci. Mater. Electron. 31 22151Google Scholar

    [22]

    Shafaay B A 2014 J. Chem., Biol. Phys. Sci. 4 1

    [23]

    Gueddim A, Madjet M E, Zerroug S, Bouarissa N 2016 Opt. Quantum Electron. 48 551Google Scholar

    [24]

    Llchuk H, Zmiiovska E, Petrus R, Semkive I, Lopatynskyi I, Kashuba 2020 J. Nano-Electron. Phys. 12 01027Google Scholar

    [25]

    Cao A, Tan T T, Zhang H, Du Y, Sun Y, Zha G 2018 Phys. B 545 323Google Scholar

    [26]

    Merad A, Kanoun M, Merad G, Cibert J, Aourag H 2005 Mater. Chem. Phys. 92 333Google Scholar

    [27]

    Liu H X, Tang F L, Xue H T, Zhang Y, Cheng Y W, Feng Y D 2016 Chin. Phys. B 25 123101Google Scholar

    [28]

    Shenoy S, Tarafder K 2020 J. Phys. Condens. Matter 32 275501Google Scholar

    [29]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [30]

    Shi L B, Xu C Y, Yuan H K 2011 Phys. B 406 3187Google Scholar

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [32]

    Butler K T, Frost J M, Walsh A 2015 Mater. Horiz. 2 228Google Scholar

    [33]

    Wang J S, Tong S C, Tsai Y H, Tsai W J, Yang C S, Chang Y H, Shen J L 2015 J. Alloys Compd. 646 129Google Scholar

    [34]

    Kumar S G, Rao K S R K 2014 Energy Environ. Sci. 7 45Google Scholar

    [35]

    Cheng Y W, Tang F L, Xue H T, Liu H X, Gao B, Feng Y D 2016 Mater. Sci. Semicond. Process. 45 9Google Scholar

    [36]

    Momma K, Izumi F 2008 J. Appl. Crystallogr. 41 653Google Scholar

    [37]

    Guo Y, Xue Y, Geng C, Li C, Li X, Niu Y 2019 J. Phys. Chem. C 123 16075Google Scholar

    [38]

    Yin W J, Shi T, Yan Y 2015 J. Phys. Chem. C 119 5253Google Scholar

    [39]

    Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J 2006 Adv. Mater. 18 789Google Scholar

    [40]

    Sharma S, Devi N, Verma U P, RajaRam P 2011 Phys. B 406 4547Google Scholar

    [41]

    Dadsetani M, Pourghazi A 2006 Phys. Rev. B 73 195102Google Scholar

    [42]

    Gajdos M, Hummer K, Kresse G, Furthmueller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

  • 图 1  表面模型的建立 (a) CdS (002)表面模型; (b) CdMnTe (111)-A1表面模型; (c) CdMnTe (111)-B1表面模型

    Figure 1.  Building of the surface models: (a) Model of the CdS (002) surface; (b) A1 surface model of CdMnTe (111); (c) B1 surface model of CdMnTe (111).

    图 2  弛豫后的表面原子位置和层间距离的变化 (a) CdS (002)表面模型; (b) CdMnTe (111)-A1表面模型; (c) CdMnTe (111)-B1表面模型

    Figure 2.  Variations of atomic positions and interlayer spacing after relaxation: (a) Model of the CdS (002) surface; (b) A1 surface model of CdMnTe (111); (c) B1 surface model of CdMnTe (111).

    图 3  表面模型总态密度和第1层及第5层局域态密度 (a) CdS (002); (b) CdMnTe (111)-A1; (c) CdMnTe (111)-B1

    Figure 3.  Total density of states and the local density of states of the first layer and the fifth layer: (a) CdS (002); (b) A1 of CdMnTe (111); (c) B1 of CdMnTe (111).

    图 4  CdS/CdMnTe异质结模型 (a) Mn原子位于界面层的异质结模型(模型A2); (b) Mn原子位于中间层的异质结模型(模型B2)

    Figure 4.  CdS/CdMnTe heterojunction models: (a) Mn atom being in the interface layer (model A2); (b) Mn atom in the internal layer (model B2).

    图 5  模型A2和B2的总能量随界面间距的变化

    Figure 5.  Variation of total energy dependent on the interface distance of the models A2 and B2, respectively.

    图 6  弛豫前后界面及其附近原子键长的变化 (a)弛豫前的模型A2; (b)弛豫后的模型A2; (c)弛豫前的模型B2; (d)弛豫后的模型B2

    Figure 6.  Bond lengths in/near of the interface before and after relaxation: (a) Before relaxation of A2; (b) after relaxation of A2; (c) before relaxation of B2; (d) after relaxation of B2.

    图 7  CdS/CdMnTe异质结总态密度与局域态密度 (a)模型A2; (b)模型B2

    Figure 7.  Total density of states and local density of states of the CdS/CdMnTe heterojunction: (a) Model A2; (b) model B2.

    图 8  CdS/CdMnTe异质结界面处原子的分态密度 (a)模型A2; (b)模型B2

    Figure 8.  Part density of states of different atoms in the CdS/CdMnTe interface: (a) Model A2; (b) model B2.

    图 9  电荷重新分布图 (a), (c)异质结A2与B2的差分电荷示意图和相应平面差分电荷密度曲线, 黄色区域代表电荷消耗, 蓝色区域代表电荷积累, 等值面值为0.00103 e3; (b), (d) A2与B2沿z轴方向的平均静电势

    Figure 9.  Distribution diagram of charges: (a), (c) Charge density difference and the corresponding planar differential charge density curve of the A2 model and B2 model, respectively. The yellow region represents charge depletion, the bule region indicates charge accumulation, the isosurface value is 0.00103 e3. (b), (d) the average electrotactic potential difference of the A2 model and B2 model, respectively, along the direction of z axis.

    图 10  表面模型和异质结模型的吸收光谱 (a) CdS (002), CdMnTe (111)-B1表面和异质结B2模型; (b)异质结A2和B2模型

    Figure 10.  Absorption spectra of surface models and heterojunction models: (a) Surface CdS (002), surfaces of CdMnTe (111)-B1, and B2 model of CdMnTe/CdS heterojunction model; (b) heterojunction A2 model and B2 model.

    表 1  CdTe和CdS晶格参数优化结果

    Table 1.  Optimal lattice parameters of CdTe and CdS.

    CdTeCdS*CdTe[25]*CdS[25]#CdTe[26]#CdS[27]
    a6.6424.2146.6464.2126.4814.140
    b6.6424.2146.6464.2126.4814.140
    c6.6426.8506.6466.8586.4816.720
    注: *为理论值, #为实验值.
    DownLoad: CSV

    表 2  弛豫后CdMnTe (111)和CdS (002)表面层间距离的变化

    Table 2.  Variations of interlayer spacing of CdMnTe (111) and CdS (002) surfaces after relaxation.

    Surfaceitemsd1-2d2-3d3-4d4-5
    CdMnTe-A1dCd-Te2.8292.8372.8312.831
    dMn-Te2.605
    d0.1380.0890.0000.000
    CdMnTe-B1dCd-Te2.7912.8412.8312.831
    dMn-Te2.697
    d0.1820.0930.0000.000
    CdSdCd-S2.5342.5382.5362.536
    d0.1200.1090.0000.000
    DownLoad: CSV
    Baidu
  • [1]

    朱建国, 孙小松, 李卫 2007 电子与光电子材料 (北京: 国防工业出版社) 第125页

    Zhu J G, Sun X S, Li W 2007 Electronic and Optoelectronic Materials (Beijing: Defense Industry Press) p125 (in chinese)

    [2]

    Miles R W, Hynes K M, Forbes I 2005 Prog. Cryst. Growth Charact. Mater. 51 1Google Scholar

    [3]

    Mishima T, Taguchi M, Sakata H, Maruyama E 2011 Sol. Energy Mater. Sol. Cells 95 18Google Scholar

    [4]

    Jordan D, Nagle J P 1994 Prog. Photovoltaics 2 171Google Scholar

    [5]

    Cheng Y J, Yang S H, Hsu C S 2009 Chem. Rev. 109 5868Google Scholar

    [6]

    Mora-Seró I, Bisquert J 2010 J. Phys. Chem. Lett. 1 3046Google Scholar

    [7]

    Zhao J 2004 Sol. Energy Mater. Sol. Cells 82 53Google Scholar

    [8]

    Cojocaru-Miredin O, Choi P, Wuerz R, Raabe D 2011 Appl. Phys. Lett. 98 73Google Scholar

    [9]

    Yang L, Xuan Y, Tan J 2011 Opt. Express 19 A1165Google Scholar

    [10]

    Chopra K L, Paulson P D, Dutta V 2004 Prog. Photovoltaics 12 69Google Scholar

    [11]

    Zhang K, Guo H 2017 J. Mater. Sci. Mater. Electron. 28 17044Google Scholar

    [12]

    Wu X 2004 Sol. Energy 77 803Google Scholar

    [13]

    Chander S, De A K, Dhaka M S 2018 Sol. Energy 174 757Google Scholar

    [14]

    Chander S, Dhaka M S 2016 Phys. E 84 112Google Scholar

    [15]

    Lee S H, Gupta A, Wang S, Compaan A D, McCandless B E 2005 Sol. Energy Mater. Sol. Cells 86 551Google Scholar

    [16]

    Chander S, Dhaka M S 2019 Sol. Energy 183 544Google Scholar

    [17]

    Rohatgi A, Ringel S A, Welch J, Meeks E, Pollard K, Erbil A, Summers C J, Meyers P V 1988 Sol. Energy 24 185

    [18]

    Luan L J, Gao L, Lv H H, Yu P F, Wang T, He Y, Zheng D 2020 Sci. Rep. 10 1Google Scholar

    [19]

    Wang S L, Lee S H, Gupta A 2004 MRS Proc. 836 L5.39Google Scholar

    [20]

    侯泽荣, 万磊, 白治中, 王德亮 2010 中国科学技术大学学报 40 718Google Scholar

    Hou Z R, W L, Bai Z Z, Wang D L 2010 J. Univ. Sci. Tech. Chin. 40 718Google Scholar

    [21]

    Olusola O I, Madugu M L, Ojo A A, Dharmadasa I M 2020 J. Mater. Sci. Mater. Electron. 31 22151Google Scholar

    [22]

    Shafaay B A 2014 J. Chem., Biol. Phys. Sci. 4 1

    [23]

    Gueddim A, Madjet M E, Zerroug S, Bouarissa N 2016 Opt. Quantum Electron. 48 551Google Scholar

    [24]

    Llchuk H, Zmiiovska E, Petrus R, Semkive I, Lopatynskyi I, Kashuba 2020 J. Nano-Electron. Phys. 12 01027Google Scholar

    [25]

    Cao A, Tan T T, Zhang H, Du Y, Sun Y, Zha G 2018 Phys. B 545 323Google Scholar

    [26]

    Merad A, Kanoun M, Merad G, Cibert J, Aourag H 2005 Mater. Chem. Phys. 92 333Google Scholar

    [27]

    Liu H X, Tang F L, Xue H T, Zhang Y, Cheng Y W, Feng Y D 2016 Chin. Phys. B 25 123101Google Scholar

    [28]

    Shenoy S, Tarafder K 2020 J. Phys. Condens. Matter 32 275501Google Scholar

    [29]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [30]

    Shi L B, Xu C Y, Yuan H K 2011 Phys. B 406 3187Google Scholar

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [32]

    Butler K T, Frost J M, Walsh A 2015 Mater. Horiz. 2 228Google Scholar

    [33]

    Wang J S, Tong S C, Tsai Y H, Tsai W J, Yang C S, Chang Y H, Shen J L 2015 J. Alloys Compd. 646 129Google Scholar

    [34]

    Kumar S G, Rao K S R K 2014 Energy Environ. Sci. 7 45Google Scholar

    [35]

    Cheng Y W, Tang F L, Xue H T, Liu H X, Gao B, Feng Y D 2016 Mater. Sci. Semicond. Process. 45 9Google Scholar

    [36]

    Momma K, Izumi F 2008 J. Appl. Crystallogr. 41 653Google Scholar

    [37]

    Guo Y, Xue Y, Geng C, Li C, Li X, Niu Y 2019 J. Phys. Chem. C 123 16075Google Scholar

    [38]

    Yin W J, Shi T, Yan Y 2015 J. Phys. Chem. C 119 5253Google Scholar

    [39]

    Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J 2006 Adv. Mater. 18 789Google Scholar

    [40]

    Sharma S, Devi N, Verma U P, RajaRam P 2011 Phys. B 406 4547Google Scholar

    [41]

    Dadsetani M, Pourghazi A 2006 Phys. Rev. B 73 195102Google Scholar

    [42]

    Gajdos M, Hummer K, Kresse G, Furthmueller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

  • [1] Wang Xiu-Yu, Wang Tao, Cui Yu-Ang, Wu Xi-Guang-Run, Wang Yang. First-principles study of effect of impurity compensation on optical properties of Si. Acta Physica Sinica, 2024, 73(11): 116301. doi: 10.7498/aps.73.20231814
    [2] Liu Chen-Xi, Pang Guo-Wang, Pan Duo-Qiao, Shi Lei-Qian, Zhang Li-Li, Lei Bo-Cheng, Zhao Xu-Cai, Huang Yi-Neng. First-principles study of influence of electric field on electronic structure and optical properties of GaN/g-C3N4 heterojunction. Acta Physica Sinica, 2022, 71(9): 097301. doi: 10.7498/aps.71.20212261
    [3] Xu Da-Qing, Zhao Zi-Han, Li Pei-Xian, Wang Chao, Zhang Yan, Liu Shu-Lin, Tong Jun. First-principle study on electronic structures, magnetic, and optical properties of different valence Mn ions doped InN. Acta Physica Sinica, 2018, 67(8): 087501. doi: 10.7498/aps.67.20172504
    [4] Tang Shi-Hui, Cao Xiu-Xia, He Lin, Zhu Wen-Jun. Effects of vacancy point defects and phase transitions on optical properties of shocked Al2O3. Acta Physica Sinica, 2016, 65(14): 146201. doi: 10.7498/aps.65.146201
    [5] Gao Min, Shu Wen-Lu, Ye Qiang, He Lin, Zhu Wen-Jun. Optical properties of (Mg0.97, Fe0.03)O ferropericlase under the pressure of the Earth’s lower mantle. Acta Physica Sinica, 2015, 64(11): 119101. doi: 10.7498/aps.64.119101
    [6] Jiao Zhao-Yong, Guo Yong-Liang, Niu Yi-Jun, Zhang Xian-Zhou. The first principle study of electronic and optical properties of defect chalcopyrite XGa2S4 (X=Zn, Cd, Hg). Acta Physica Sinica, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [7] Duan Yong-Hua, Sun Yong. Electronic structure and optical properties of (α, β, γ)-Nb5Si3. Acta Physica Sinica, 2012, 61(21): 217101. doi: 10.7498/aps.61.217101
    [8] Feng Xian-Yang, Lu Yao, Jiang Lei, Zhang Guo-Lian, Zhang Chang-Wen, Wang Pei-Ji. Study of the optical properties of superlattices ZnO doped with indium. Acta Physica Sinica, 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [9] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Jiang Lei, Zhang Guo-Lian. Study of material properties of Fe, S Co-doped SnO2 by first principles. Acta Physica Sinica, 2012, 61(2): 023101. doi: 10.7498/aps.61.023101
    [10] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [11] Jiao Zhao-Yong, Yang Ji-Fei, Zhang Xian-Zhou, Ma Shu-Hong, Guo Yong-Liang. Theoretical investigation of elastic, electronic, and optical properties of zinc-blende structure GaN under high pressure. Acta Physica Sinica, 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [12] Yu Feng, Wang Pei-Ji, Zhang Chang-Wen. Electronic structure and optical properties of Al-doped SnO2. Acta Physica Sinica, 2011, 60(2): 023101. doi: 10.7498/aps.60.023101
    [13] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Jiang Lei, Zhang Guo-Lian, Song Peng. Material opto-electronic properties of In, N co-doped SnO2 studied by first principles. Acta Physica Sinica, 2011, 60(6): 063103. doi: 10.7498/aps.60.063103
    [14] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Jiang Lei, Zhang Guo-Lian. First-principles calculation on electronic structure and optical properties of iron-doped SnO2. Acta Physica Sinica, 2011, 60(11): 113101. doi: 10.7498/aps.60.113101
    [15] Gu Mu, Lin Ling, Liu Bo, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. Fist-principle calculation for electronic structure of M’-GdTaO4. Acta Physica Sinica, 2010, 59(4): 2836-2842. doi: 10.7498/aps.59.2836
    [16] Zhang Xue-Jun, Gao Pan, Liu Qing-Ju. First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron. Acta Physica Sinica, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [17] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [18] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [19] Liu Jian-Jun. The effect on electronic density of states and optical properties of ZnO by doping Ga. Acta Physica Sinica, 2010, 59(9): 6466-6472. doi: 10.7498/aps.59.6466
    [20] Yu Feng, Wang Pei-Ji, Zhang Chang-Wen. First-principles study of optical and electronic properties of N-doped SnO2. Acta Physica Sinica, 2010, 59(10): 7285-7290. doi: 10.7498/aps.59.7285
Metrics
  • Abstract views:  7194
  • PDF Downloads:  224
  • Cited By: 0
Publishing process
  • Received Date:  05 February 2021
  • Accepted Date:  04 April 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回
Baidu
map