搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析

黄炳铨 周铁戈 吴道雄 张召富 李百奎

引用本文:
Citation:

空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析

黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎

Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis

Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui
PDF
HTML
导出引用
  • 采用基于密度泛函理论的第一性原理计算方法, 系统地研究了带缺陷的二维类石墨烯结构的ZnO (graphene like-ZnO, g-ZnO)的几何结构、电子结构、磁性性质和吸收光谱性质. 研究的缺陷类型包括锌原子空位(VZn_g-ZnO)、氧原子空位(VO_g-ZnO)、氮原子取代氧原子(NO_g-ZnO)和表面吸附氮原子(N@g-ZnO). 研究发现: NO_g-ZnO体系和N@g-ZnO体系形变较小, 而空位体系会引入较大的形变; g-ZnO本身无磁矩, 引入Zn空位后, VZn_g-ZnO体系总磁矩为2.00 μB; VO_g-ZnO体系无磁矩, 但N掺杂后的NO_g-ZnO体系和氮吸附的N@g-ZnO体系的总磁矩分别为1.00 μB和3.00 μB. 利用掺杂体系的局域对称性和分子轨道理论分析了杂质能级和磁矩的产生原因, 并且通过分析光吸收曲线得知, 引入空位缺陷或者N原子掺杂, 可以有效增强g-ZnO单层材料的光吸收性能. 研究结果对系统地理解g-ZnO及其缺陷模型的性质有重要意义, 可以为发展基于g-ZnO的纳米电子器件和光催化应用提供理论参考.
    The geometric structure, electronic structure, magnetic properties and absorption spectrum of graphene-like ZnO (g-ZnO) monolayer supercell with defects are systemically studied by the first-principles calculation based on density functional theory in this work. The defect supercell model includes zinc atom vacancy (VZn_g-ZnO), oxygen atom vacancy (VO_g-ZnO), nitrogen atom substituted for oxygen atom (NO_g-ZnO) and nitrogen adsorbed on the g-ZnO monolayer (N@g-ZnO). The results indicate that the geometric deformation induced by N-doping in NO_g-ZnO and N@g-ZnO structure is negligible, while that of supercell with vacancy is relatively large. The O atoms neighboring a Zn vacancy center in VZn_g-ZnO model move away from each other as a result of symmetry breaking. As a contrast, three N atoms around VO center move into VZn_g-ZnO supercell. The pristine g-ZnO is non-magnetic. But the magnetic moment of VZn_g-ZnO is 2.00 μB in total as a result of symmetry breaking. The partial magnetic moment mainly results from the p-orbitals of the three neighboring O atoms. VO_g-ZnO has no magnetic moment, but possesses the electronic structure with identical spin-up and spin-down. The total magnetic moment of the N-doped NO_g-ZnO is 1.00 μB, and the total magnetic moment of N@g-ZnO is 3.00 μB. Their local magnetic moments are mainly contributed by the p-orbitals of N atom. The density of states and the spin density are given to analyze the magnetic properties. Based on the supercell local symmetry and molecular orbital theory, the origin of magnetic moment is well explained. The magnetic VZn_g-ZnO, NO_g-ZnO and N@g-ZnO supercell are found to have a D3h, D3h and C3v local symmetry, respectively, which well explains that their total magnetic moments are 2.00 μB, 1.00 μB and 3.00 μB, respectively. The optical absorption characteristics are also discussed. An enhancement of light absorption can be observed for the defective supercells, due to the introduction of defect states into the band gap. The optical transition between gap state and valance band leads to the below band gap absorption. These results are of insightful guidance for understanding properties of graphene-like ZnO monolayer as well as g-ZnO with vacancy and N dopant, and can be theoretically adopted for investigating the nano-electronic devices and catalytic applications based on g-ZnO monolayer.
      通信作者: 李百奎, libk@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61604098)和中央高校基本科研业务费专项(批准号: 63191740)资助的课题)
      Corresponding author: Li Bai-Kui, libk@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61604098) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 63191740)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhang Y, Tan Y, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [3]

    Kerelsky A, Mcgilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A, Pasupathy A N 2019 Nature 572 95Google Scholar

    [4]

    Ta H, Zhao L, Pohl D, Pang J, Trzebicka B, Rellinghaus B, Pribat D, Gemming T, Liu Z, Bachmatiuk A, Rümmeli M 2016 Crystals 6 100Google Scholar

    [5]

    Weng Q, Wang X, Wang X, Bando Y, Golberg D 2016 Chem. Soc. Rev. 45 3989Google Scholar

    [6]

    Zhang Z, Geng Z, Cai D, Pan T, Chen Y, Dong L, Zhou T 2015 Physica E 65 24Google Scholar

    [7]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [8]

    Gao Z, Zhou Z, Tománek D 2019 ACS Nano 13 5103Google Scholar

    [9]

    Ye M, Seo H, Galli G 2019 npj Comput. Mater. 5 44Google Scholar

    [10]

    Zhu C, Gao D, Ding J W, Chao D, Wang J 2018 Chem. Soc. Rev. 47 4332Google Scholar

    [11]

    Liu Y, Huang Y, Duan X 2019 Nature 567 323Google Scholar

    [12]

    Claeyssens F, Freeman C L, Allan N L, Sun Y, Ashfold M N R, Harding J H 2005 J. Mater. Chem. 15 139Google Scholar

    [13]

    Tusche C, Meyerheim H L, Kirschner J 2007 Phys. Rev. Lett. 99 26102Google Scholar

    [14]

    Topsakal M, Cahangirov S, Bekaroglu E, Ciraci S 2009 Phys. Rev. B 80 235119Google Scholar

    [15]

    Zheng F B, Zhang C W, Wang P J, Luan H X 2012 J. Appl. Phys. 111 44329Google Scholar

    [16]

    Peng Q, Liang C, Ji W, De S 2013 Comp. Mater. Sci. 68 320Google Scholar

    [17]

    Guo H, Zhao Y, Lu N, Kan E, Zeng X C, Wu X, Yang J 2012 J. Phys. Chem. C 116 11336Google Scholar

    [18]

    Chen J L, Devi N, Li N, Fu D J, Ke X W 2018 Chin. Phys. B 27 086102Google Scholar

    [19]

    Tan J T, Zhang S F, Qian M C, Luo H J, Wu F, Long X M, Fang L, Wei D P, Hu B S 2018 Chin. Phys. B 27 114401Google Scholar

    [20]

    Zheng S W, Fan G H, He M, Zhang T 2014 Chin. Phys. B 23 066301Google Scholar

    [21]

    侯清玉, 曲灵丰, 赵春旺 2016 65 057401Google Scholar

    Hou Q Y, Qu L F, Zhao C W 2016 Acta Phys. Sin. 65 057401Google Scholar

    [22]

    侯清玉, 李勇, 赵春旺 2017 66 067202Google Scholar

    Hou Q Y, Li Y, Zhao C 2017 Acta Phys. Sin. 66 067202Google Scholar

    [23]

    张梅玲, 陈玉红, 张材荣, 李公平 2019 68 087101Google Scholar

    Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta Phys. Sin. 68 087101Google Scholar

    [24]

    张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能 2019 68 017401Google Scholar

    Zhang L L, Xia T, Liu G A, Lei B C, Zhao X C, Wang S X, Huang Y N 2019 Acta P hys. Sin. 68 017401Google Scholar

    [25]

    Sun M, Ren Q, Zhao Y, Chou J, Yu J, Tang W 2017 Carbon 120 265Google Scholar

    [26]

    张召富, 周铁戈, 左旭 2013 62 083102Google Scholar

    Zhang Z F, Zhou T G, Zuo X 2013 Acta Phys. Sin. 62 083102Google Scholar

    [27]

    张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈 2013 62 246301Google Scholar

    Zhang Z F, Geng Z H, Wang P, Hu Y Q, Zheng Y F, Zhou T G 2013 Acta Phys. Sin. 62 246301Google Scholar

    [28]

    Zhang Z F, Zhou T G, Zhao H Y, Wei X L 2014 Chin. Phys. B 23 016801Google Scholar

    [29]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 864Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [32]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [33]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [34]

    Wang V, Xu N, Liu J, Tang G, Geng W 2019 arXiv: 1908.08269 [cond-mat.mtrl-sci]

    [35]

    Cui J, Liang S, Sun S, Zheng X, Zhang J 2018 J. Phys.: Condens. Matter 30 175001Google Scholar

    [36]

    Wang S, Ren C, Tian H, Yu J, Sun M 2018 Phys. Chem. Chem. Phys. 20 13394Google Scholar

    [37]

    Niu X, Li Y, Shu H, Yao X, Wang J 2017 J. Phys. Chem. C 121 3648Google Scholar

    [38]

    Liu Y, Liu H, Zhou H, Li T, Zhang L 2019 Appl. Surf. Sci. 466 133Google Scholar

    [39]

    Tu Z C 2010 J. Comput. Theor. Nanosci. 7 1182

  • 图 1  理想g-ZnO的(a)晶体结构以及(b)能带和态密度, 其中g-ZnO价带顶对齐到0 eV

    Fig. 1.  (a) Atomic structures, (b) band structure and density of states (DOS) of the g-ZnO primitive unit cell. The valence band maximum of g-ZnO is referred to 0 eV.

    图 2  空位及掺杂超胞体系的几何结构示意图 (a) VZn_g-ZnO; (b) VO_g-ZnO; (c) NO_g-ZnO; (d) N原子吸附在六元环中心上方; (e) N原子吸附在Zn原子上方; (f) N原子吸附在O原子上方

    Fig. 2.  Atomic structures of the g-ZnO supercells: (a) Ideal g-ZnO; (b) VO_g-ZnO; (c) NO_g-ZnO; (d) N atom at hollow site; (e) N atom on top of Zn atom; (f) N atom on top of O atom.

    图 3  总态密度和分波态密度 (a) VZn_g-ZnO; (b) VO_g-ZnO; (c) NO_g-ZnO; (d) N@g-ZnO; 其中g-ZnO的价带顶对齐到0 eV

    Fig. 3.  Total density of states and partial density of states: (a) VZn_g-ZnO; (b) VO_g-ZnO; (c) NO_g-ZnO; (d) N@g-ZnO. The valence band maximum of g-ZnO is referred to 0 eV.

    图 4  能带结构 (a) VZn_g-ZnO; (b) VO_g-ZnO; (c) NO_g-ZnO; (d) N@g-ZnO; 其中g-ZnO的价带顶对齐到0 eV

    Fig. 4.  Band structure of (a) VZn_g-ZnO; (b) VO_g-ZnO; (c) NO_g-ZnO; (d) N@g-ZnO. The valence band maximum of g-ZnO is referred to 0 eV.

    图 5  分子轨道 (a) VZn_g-ZnO体系, O能级劈裂及电子填充示意图; (b) NO_g-ZnO体系, p轨道分裂及电子填充示意图; (c) N@g-ZnO体系, p轨道分裂及电子填充示意图

    Fig. 5.  Molecular orbital diagrams: (a) VZn_g-ZnO supercell, O energy level splitting and electron filling; (b) NO_g-ZnO supercell, p-orbital splitting and electron filling; (c) N@g-ZnO supercell, p-orbital splitting and electron filling.

    图 6  自旋密度图, 其中青色区域是自旋向上, 黄色区域是自旋向下 (a) VZn_g-ZnO体系的自旋密度; (b) VO_g-ZnO体系的自旋密度; (c) NO_g-ZnO体系的自旋密度; (d) N@g-ZnO体系的自旋密度

    Fig. 6.  Spin density of (a) VZn_g-ZnO, (b) VO_g-ZnO, (c) NO_g-ZnO, and (d) N@g-ZnO supercells, respectively. Cyan is spin up and yellow is spin down.

    图 7  理想g-ZnO及具有空位、掺杂的超胞体系的光学吸收谱

    Fig. 7.  Optical absorption spectra of ideal g-ZnO and the defective supercell systems.

    表 1  N掺杂g-ZnO单层的结构参数和结合能

    Table 1.  Structure parameters and binding energy of N-doped g-ZnO monolayer.

    超胞模型hNhZnhOdZn_NdO_NEb/eV
    NO_g-ZnO0.070.0050.0031.923.31–4.12
    N@g-ZnO2.120.003–0.1042.842.93–0.25
    下载: 导出CSV

    表 2  N掺杂g-ZnO单层的磁矩

    Table 2.  Magnetic moment of N-doped g-ZnO monolayer.

    超胞模型MtotBMNBMZnBMOB
    VO_g-ZnO000
    VZn_g-ZnO2.000.020.45
    NO_g-ZnO1.000.590.010
    N@g-ZnO3.001.9000.05
    下载: 导出CSV
    Baidu
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhang Y, Tan Y, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [3]

    Kerelsky A, Mcgilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A, Pasupathy A N 2019 Nature 572 95Google Scholar

    [4]

    Ta H, Zhao L, Pohl D, Pang J, Trzebicka B, Rellinghaus B, Pribat D, Gemming T, Liu Z, Bachmatiuk A, Rümmeli M 2016 Crystals 6 100Google Scholar

    [5]

    Weng Q, Wang X, Wang X, Bando Y, Golberg D 2016 Chem. Soc. Rev. 45 3989Google Scholar

    [6]

    Zhang Z, Geng Z, Cai D, Pan T, Chen Y, Dong L, Zhou T 2015 Physica E 65 24Google Scholar

    [7]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [8]

    Gao Z, Zhou Z, Tománek D 2019 ACS Nano 13 5103Google Scholar

    [9]

    Ye M, Seo H, Galli G 2019 npj Comput. Mater. 5 44Google Scholar

    [10]

    Zhu C, Gao D, Ding J W, Chao D, Wang J 2018 Chem. Soc. Rev. 47 4332Google Scholar

    [11]

    Liu Y, Huang Y, Duan X 2019 Nature 567 323Google Scholar

    [12]

    Claeyssens F, Freeman C L, Allan N L, Sun Y, Ashfold M N R, Harding J H 2005 J. Mater. Chem. 15 139Google Scholar

    [13]

    Tusche C, Meyerheim H L, Kirschner J 2007 Phys. Rev. Lett. 99 26102Google Scholar

    [14]

    Topsakal M, Cahangirov S, Bekaroglu E, Ciraci S 2009 Phys. Rev. B 80 235119Google Scholar

    [15]

    Zheng F B, Zhang C W, Wang P J, Luan H X 2012 J. Appl. Phys. 111 44329Google Scholar

    [16]

    Peng Q, Liang C, Ji W, De S 2013 Comp. Mater. Sci. 68 320Google Scholar

    [17]

    Guo H, Zhao Y, Lu N, Kan E, Zeng X C, Wu X, Yang J 2012 J. Phys. Chem. C 116 11336Google Scholar

    [18]

    Chen J L, Devi N, Li N, Fu D J, Ke X W 2018 Chin. Phys. B 27 086102Google Scholar

    [19]

    Tan J T, Zhang S F, Qian M C, Luo H J, Wu F, Long X M, Fang L, Wei D P, Hu B S 2018 Chin. Phys. B 27 114401Google Scholar

    [20]

    Zheng S W, Fan G H, He M, Zhang T 2014 Chin. Phys. B 23 066301Google Scholar

    [21]

    侯清玉, 曲灵丰, 赵春旺 2016 65 057401Google Scholar

    Hou Q Y, Qu L F, Zhao C W 2016 Acta Phys. Sin. 65 057401Google Scholar

    [22]

    侯清玉, 李勇, 赵春旺 2017 66 067202Google Scholar

    Hou Q Y, Li Y, Zhao C 2017 Acta Phys. Sin. 66 067202Google Scholar

    [23]

    张梅玲, 陈玉红, 张材荣, 李公平 2019 68 087101Google Scholar

    Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta Phys. Sin. 68 087101Google Scholar

    [24]

    张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能 2019 68 017401Google Scholar

    Zhang L L, Xia T, Liu G A, Lei B C, Zhao X C, Wang S X, Huang Y N 2019 Acta P hys. Sin. 68 017401Google Scholar

    [25]

    Sun M, Ren Q, Zhao Y, Chou J, Yu J, Tang W 2017 Carbon 120 265Google Scholar

    [26]

    张召富, 周铁戈, 左旭 2013 62 083102Google Scholar

    Zhang Z F, Zhou T G, Zuo X 2013 Acta Phys. Sin. 62 083102Google Scholar

    [27]

    张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈 2013 62 246301Google Scholar

    Zhang Z F, Geng Z H, Wang P, Hu Y Q, Zheng Y F, Zhou T G 2013 Acta Phys. Sin. 62 246301Google Scholar

    [28]

    Zhang Z F, Zhou T G, Zhao H Y, Wei X L 2014 Chin. Phys. B 23 016801Google Scholar

    [29]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 864Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [32]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [33]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [34]

    Wang V, Xu N, Liu J, Tang G, Geng W 2019 arXiv: 1908.08269 [cond-mat.mtrl-sci]

    [35]

    Cui J, Liang S, Sun S, Zheng X, Zhang J 2018 J. Phys.: Condens. Matter 30 175001Google Scholar

    [36]

    Wang S, Ren C, Tian H, Yu J, Sun M 2018 Phys. Chem. Chem. Phys. 20 13394Google Scholar

    [37]

    Niu X, Li Y, Shu H, Yao X, Wang J 2017 J. Phys. Chem. C 121 3648Google Scholar

    [38]

    Liu Y, Liu H, Zhou H, Li T, Zhang L 2019 Appl. Surf. Sci. 466 133Google Scholar

    [39]

    Tu Z C 2010 J. Comput. Theor. Nanosci. 7 1182

  • [1] 李欣悦, 高国翔, 高强, 刘春生, 叶小娟. 二维BeB2作为镁离子电池阳极材料的理论研究.  , 2024, 73(11): 118201. doi: 10.7498/aps.73.20240134
    [2] 陈思钰, 叶小娟, 刘春生. 二维锗醚在钠离子电池方面的理论研究.  , 2022, 71(22): 228202. doi: 10.7498/aps.71.20220572
    [3] 高旭东, 杨得草, 魏雯静, 李公平. 电子束对ZnO和TiO2辐照损伤的模拟计算.  , 2021, 70(23): 234101. doi: 10.7498/aps.70.20211223
    [4] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究.  , 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [5] 罗长维, 仇猛淋, 王广甫, 王庭顺, 赵国强, 华青松. 利用离子激发发光研究ZnO离子注入和退火处理的缺陷变化.  , 2020, 69(10): 102901. doi: 10.7498/aps.69.20200029
    [6] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究.  , 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [7] 张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能. 第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质.  , 2019, 68(1): 017401. doi: 10.7498/aps.68.20181531
    [8] 郭家俊, 董静雨, 康鑫, 陈伟, 赵旭. 过渡金属元素X(X=Mn,Fe,Co,Ni)掺杂对ZnO基阻变存储器性能的影响.  , 2018, 67(6): 063101. doi: 10.7498/aps.67.20172459
    [9] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究.  , 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [10] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究.  , 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [11] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质.  , 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [12] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算.  , 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [13] 秦杰明, 田立飞, 赵东旭, 蒋大勇, 曹建明, 丁梦, 郭振. 一维氧化锌纳米结构生长及器件制备研究进展.  , 2011, 60(10): 107307. doi: 10.7498/aps.60.107307
    [14] 袁娣, 黄多辉, 罗华峰, 王藩侯. Li, N双受主共掺杂实现p型ZnO的第一性原理研究.  , 2010, 59(9): 6457-6465. doi: 10.7498/aps.59.6457
    [15] 程兴旺, 李祥, 高院玲, 于宙, 龙雪, 刘颖. Co掺杂的ZnO室温铁磁半导体材料制备与磁性和光学特性研究.  , 2009, 58(3): 2018-2022. doi: 10.7498/aps.58.2018
    [16] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究.  , 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [17] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究.  , 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [18] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究.  , 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
计量
  • 文章访问数:  12963
  • PDF下载量:  364
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-20
  • 修回日期:  2019-09-19
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回
Baidu
map