-
As one of the regulators of cationic concentration in cells, potassium channels play an important role in the depolarization and repolarization of nerve cell. KcsA (K+ conduction and selectivity architecture) channel is simple and has the commonness of potassium ion channel, which is often used as a template for potassium channel research. In this paper, Brownian dynamics (BD) method is used to simulate the electrical characteristics of the actual KcsA potassium channel systematically. The potential mean force (PMF) of ions in the channel under electrostatic field, the current-voltage characteristic curve of symmetric solution and asymmetric solution, the ion concentration distribution curve in the axial direction of the channel, and the conduction-concentration curve are obtained. The results show that the selectivity filter region of KcsA potassium channel blocks the passage of Cl– basically, showing a special selection characteristic of the passage of K+, that its current-voltage curve presents a basically linear distribution, and that the conductivity-concentration curve presents a trend of first increasing and then flattening. The basic characteristic is consistent with the experimental phenomenon. In addition, the influence of the THz field on the channel K+ current is also simulated and analyzed. Compared with applying only the same amplitude electrostatic field, the selected terahertz field of 0.6 THz, 1.2 THz, and 5 THz can reduce the PMF by affecting the interaction potential energy between ion pairs, thereby increasing the K+ current. The research in this paper not only deepens the understanding of the regularity of KcsA potassium ion channels, but also provides a new idea for studying other types of ion channels and the influence of terahertz field on the characteristics of ion channels.
-
Keywords:
- Brownian dynamics /
- KcsA potassium ion channel /
- potential of mean force /
- terahertz field
[1] Breedlove S M, Watson N V 2017 Behavioral Neuroscience (8th Ed.) (Sunderland, Massachusetts: Sinauer Associates, Inc) pp29,30
[2] Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A 2012 Chem. Rev. 112 6250
Google Scholar
[3] Corry B, Chung S H 2006 Cell. Mol. Life. Sci. 63 301
Google Scholar
[4] Tu B, Bai S Y, Chen M X, Xie Y, Zhang L B, Lu B Z 2014 Comput. Sci. Discov. 7 014002
Google Scholar
[5] Im W, Roux B 2002 J. Mol. Biol. 322 851
Google Scholar
[6] Im W, Seefeld S, Roux B 2000 Biophys. J. 79 788
Google Scholar
[7] Lee K I, Jo S, Rui H, Egwolf B, Roux B, Pastor R W, Im W 2012 J. Comput. Chem. 33 331
Google Scholar
[8] Chung S H, Hoyles M, Allen T, Kuyucak S 1998 Biophys. J. 75 793
Google Scholar
[9] Noskov S Y, Im W, Roux B 2004 Biophys. J. 87 2299
Google Scholar
[10] Kutzner C, Grubmüller H, Groot B L, Zachariae U 2011 Biophys. J. 101 755
Google Scholar
[11] Lee K I, Rui H, Pastor R W, Im W 2011 Biophys. J. 100 611
Google Scholar
[12] Boiteux C, Kraszewski S, Ramseyer C, Girardet C 2007 J. Mol. Model. 13 699
Google Scholar
[13] Allen T W, Chung S H 2001 Biochim. Biophys. Acta 1515 83
Google Scholar
[14] Chung S H, Allen T W, Kuyucak S 2002 Biophys. J. 82 628
Google Scholar
[15] Chung S H, Allen T W, Kuyucak S 2002 Biophys. J. 83 263
Google Scholar
[16] Allen T W, Kuyucak S, Chung S H 2000 Biophys. Chem. 86 1
Google Scholar
[17] Jiang Y X, Lee A, Chen J Y, Cadene M, Chait B T, MacKinnon R 2002 Nature 417 523
Google Scholar
[18] Sansoma M S P, Shrivastavab I H, Brighta J N, Tatec J, Capenera C E, Biggin P C 2002 Biochim. Biophys. Acta. 1565 294
Google Scholar
[19] Horng T L, Chen R S, Leonardi M V, Franciolini F, Catacuzzeno L 2022 Front. Mol. Biosci. 9 1
Google Scholar
[20] Li S C, Hoyles M, Kuyucak S, Chung S H 1998 Biophys. J. 74 37
Google Scholar
[21] Chung S H, AllenT W, Hoyles M, Kuyucak S 1999 Biophys. J. 77 2517
Google Scholar
[22] Hoyles M, Kuyucak S, Chung S H 1998 Phys. Rev. E. 58 3654
Google Scholar
[23] Schirmer T, Phale P S 1999 J. Mol. Biol. 294 1159
Google Scholar
[24] Sunhwan J, Taehoon K, Iyer V G, Jo S, Kim T, Iyer V G, Im W 2008 J. Comput. Chem. 29 1859
Google Scholar
[25] Im W, Roux B 2001 J. Chem. Phys. 115 4850
Google Scholar
[26] Berti C, Furini S, Gillespie D, Boda D, Eisenberg R S, Sangiorgi E, Fiegna C 2014 J. Chem. Theory. Comput. 10 2911
Google Scholar
[27] Lemasurier M, Heginbotham L, Miller C 2001 J. Gen. Physiol. 118 303
Google Scholar
[28] 薄文斐 2020 博士学位论文 (成都: 电子科技大学)
Bo W F 2020 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[29] Dalzell D R, McQuade J, Vincelette R, Ibey B, Payne J, Thomas R, Roach W P, Roth C L, Wilmink G J 2010 Proc. SPIE 7562 75620M
Google Scholar
[30] Wei C, Zhang Y C, Li R, Wang S G, Wang T, Liu J H, Liu Z, Wang K J, Liu J S, Liu X M 2018 Biomed. Opt. Express 9 3998
Google Scholar
-
-
[1] Breedlove S M, Watson N V 2017 Behavioral Neuroscience (8th Ed.) (Sunderland, Massachusetts: Sinauer Associates, Inc) pp29,30
[2] Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A 2012 Chem. Rev. 112 6250
Google Scholar
[3] Corry B, Chung S H 2006 Cell. Mol. Life. Sci. 63 301
Google Scholar
[4] Tu B, Bai S Y, Chen M X, Xie Y, Zhang L B, Lu B Z 2014 Comput. Sci. Discov. 7 014002
Google Scholar
[5] Im W, Roux B 2002 J. Mol. Biol. 322 851
Google Scholar
[6] Im W, Seefeld S, Roux B 2000 Biophys. J. 79 788
Google Scholar
[7] Lee K I, Jo S, Rui H, Egwolf B, Roux B, Pastor R W, Im W 2012 J. Comput. Chem. 33 331
Google Scholar
[8] Chung S H, Hoyles M, Allen T, Kuyucak S 1998 Biophys. J. 75 793
Google Scholar
[9] Noskov S Y, Im W, Roux B 2004 Biophys. J. 87 2299
Google Scholar
[10] Kutzner C, Grubmüller H, Groot B L, Zachariae U 2011 Biophys. J. 101 755
Google Scholar
[11] Lee K I, Rui H, Pastor R W, Im W 2011 Biophys. J. 100 611
Google Scholar
[12] Boiteux C, Kraszewski S, Ramseyer C, Girardet C 2007 J. Mol. Model. 13 699
Google Scholar
[13] Allen T W, Chung S H 2001 Biochim. Biophys. Acta 1515 83
Google Scholar
[14] Chung S H, Allen T W, Kuyucak S 2002 Biophys. J. 82 628
Google Scholar
[15] Chung S H, Allen T W, Kuyucak S 2002 Biophys. J. 83 263
Google Scholar
[16] Allen T W, Kuyucak S, Chung S H 2000 Biophys. Chem. 86 1
Google Scholar
[17] Jiang Y X, Lee A, Chen J Y, Cadene M, Chait B T, MacKinnon R 2002 Nature 417 523
Google Scholar
[18] Sansoma M S P, Shrivastavab I H, Brighta J N, Tatec J, Capenera C E, Biggin P C 2002 Biochim. Biophys. Acta. 1565 294
Google Scholar
[19] Horng T L, Chen R S, Leonardi M V, Franciolini F, Catacuzzeno L 2022 Front. Mol. Biosci. 9 1
Google Scholar
[20] Li S C, Hoyles M, Kuyucak S, Chung S H 1998 Biophys. J. 74 37
Google Scholar
[21] Chung S H, AllenT W, Hoyles M, Kuyucak S 1999 Biophys. J. 77 2517
Google Scholar
[22] Hoyles M, Kuyucak S, Chung S H 1998 Phys. Rev. E. 58 3654
Google Scholar
[23] Schirmer T, Phale P S 1999 J. Mol. Biol. 294 1159
Google Scholar
[24] Sunhwan J, Taehoon K, Iyer V G, Jo S, Kim T, Iyer V G, Im W 2008 J. Comput. Chem. 29 1859
Google Scholar
[25] Im W, Roux B 2001 J. Chem. Phys. 115 4850
Google Scholar
[26] Berti C, Furini S, Gillespie D, Boda D, Eisenberg R S, Sangiorgi E, Fiegna C 2014 J. Chem. Theory. Comput. 10 2911
Google Scholar
[27] Lemasurier M, Heginbotham L, Miller C 2001 J. Gen. Physiol. 118 303
Google Scholar
[28] 薄文斐 2020 博士学位论文 (成都: 电子科技大学)
Bo W F 2020 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[29] Dalzell D R, McQuade J, Vincelette R, Ibey B, Payne J, Thomas R, Roach W P, Roth C L, Wilmink G J 2010 Proc. SPIE 7562 75620M
Google Scholar
[30] Wei C, Zhang Y C, Li R, Wang S G, Wang T, Liu J H, Liu Z, Wang K J, Liu J S, Liu X M 2018 Biomed. Opt. Express 9 3998
Google Scholar
Catalog
Metrics
- Abstract views: 4250
- PDF Downloads: 120
- Cited By: 0