-
In this paper, we propose a new method to realize both polarization-multiplexing and wavelength-multiplexing using a simple structure, which can realize hologram by the multiplexing of double wavelengths and double polarization in the visible band. Our design can reduce color cross-talk and have a higher diffraction efficiency. We design a transmission metasurface composed of simple rectangular cells. Firstly, we establish the relationship of structural parameters with the transmission phase under various incident conditions of light beams. Then we propose a fitness function that can optimize the structural parameters of the unit cell at each pixel point, which can display different images by 532 nm x-polarization and 633 nm y-polarization incident light beams respectively. Finally, finite difference time domain method is used to analyze the structure, and the holographic result fits the theoretical design very well. This work proposes using single metasurface structure to solve the problems of wavelength cross-talk appearing when using simple structures, and will have great importance in coding and anti-counterfeiting.
-
Keywords:
- metasurface /
- holographic /
- double wavelengths /
- double polarization
[1] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
[2] Yu N F, Capasso F 2014 Nat. Mater. 13 139
Google Scholar
[3] Khorasaninejad M, Crozier K B 2014 Nat. Commun. 5 5386
Google Scholar
[4] Khorasaninejad M, Zhu W, Crozier K B 2015 Optica 2 376
Google Scholar
[5] Khorasaninejad M, Chen W T, Devlin R C, Capasso F 2016 Science 352 1190
Google Scholar
[6] Huang K, Dong Z, Mei S, Zhang L, Liu Y, Liu H, Zhu H, Teng J H, Luk’yanchuk B, Yang J K W, Qiu C W 2016 Laser Photonics Rev. 10 500
Google Scholar
[7] Jiang Q, Jin G F, Cao L C 2019 Adv. Opt. Photonics 11 518
Google Scholar
[8] Genevet P, Capasso F 2015 Rep. Prog. Phys. 78 024401
Google Scholar
[9] Jin L, Dong Z, Mei S, Yu Y F, Wei Z, Pan Z, Rezaei S D, Li X, Kuznetsov A I, Kivshar Y S, Yang J K W, Qiu C W 2018 Nano Lett. 18 8016
Google Scholar
[10] Dong F, Feng H, Xu L, Wang B, Song Z, Zhang X, Yan L, Li X, Tian Y, Wang W, Sun L, Li Y, Chu W 2019 ACS Photonics 6 230
Google Scholar
[11] Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310
Google Scholar
[12] 徐平, 袁霞, 杨拓, 黄海漩, 唐少拓, 黄燕燕, 肖钰斐, 彭文达 2017 66 124201
Google Scholar
Xu P, Yuan X, Yang T, Huang H X, Tang S T, Huang Y Y, Xiao Y F, Peng W D 2017 Acta Phys. Sin. 66 124201
Google Scholar
[13] 徐平, 唐少拓, 袁霞, 黄海漩, 杨拓, 罗统政, 喻珺 2018 024202
Google Scholar
Xu P, Tang S T, Yuan X, Huang H X, Yang T, Luo T Z, Yu J 2018 Acta Phys. Sin. 024202
Google Scholar
[14] Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177
Google Scholar
[15] Pan Y, Huang H X, Lei L, Zou Y, Xiao Y F, Yang T, Xu P 2019 Appl. Sci. 9 407
Google Scholar
[16] Xu P, Yuan X, Huang H X, Yang T, Huang Y Y, Zhu T F, Tang S T 2016 Nanoscale Res. Letters. 11 485
Google Scholar
[17] Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I D, Liao C Y, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P 2014 Nano Lett. 14 225
Google Scholar
[18] Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A 2015 Nat. Commun 6 7069
Google Scholar
[19] Balthasar Mueller J P, Rubin N A, Devlin R C, Groever B, Capasso F 2017 Phys. Rev. Lett. 118 113901
Google Scholar
[20] Wang B, Dong F, Li Q T, Yang D, Sun C, Chen J, Song Z, Xu L, Chu W, Xiao Y F, Gong Q, Li Y 2016 Nano Lett. 16 5235
Google Scholar
[21] Wan W, Gao J, Yang X 2017 Opt. Mater. 5 1700541
Google Scholar
[22] Huang Y W, Chen W T, Tsai W Y, Wu P C, Wang C M, Sun G, Tsai D P 2015 Nano Lett. 15 3122
Google Scholar
[23] Qin F F, Liu Z Z Zhang Z, Zhang Q, Xiao J J 2018 Opt. Express 26 11577
Google Scholar
[24] Wan W, Gao J, Yang X 2106 ACS Nano 10 10671
[25] Eisenbach O, Avayu O, Ditcovski R, Ellenbogen T 2015 Opt. Express 23 3928
Google Scholar
[26] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2016 Opt. Express 24 18468
Google Scholar
[27] Tang S W, Ding F, Jiang T, Cai T, X H X 2018 Opt. Express 26 23760
Google Scholar
[28] Wei Q S, Sain B, Wang Y T, Reineke B, Li Xiao W, Huang L L, Zentgraf T 2019 Nano Lett. 19 8964
Google Scholar
[29] Arbabi A, Horie Y, Bagheri M, Faraon A 2015 Nat. Nano-technol. 10 937
Google Scholar
[30] Gerchberg R W, Saxton W O 1972 Optik 35 237
[31] Zhao W, Jiang H, Liu B, Song J, Jiang Y, Tang C, Li J 2016 Sci. Rep. 6 30613
Google Scholar
[32] Yoon G, Lee D, Nam K T, Rho J 2017 ACS Photonics 5 1643
[33] Sajedian I, Lee H, Rho J 2019 Sci. Rep. 9 10899
Google Scholar
-
图 2 超表面微元相位分布 (a) 532 nm波长、x线偏振态, (b) 633 nm波长、y线偏振态; 超表面微元透过效率分布 (c) 532 nm波长、x线偏振态, (d) 633 nm波长、y线偏振态
Fig. 2. Phase of the metasurface (a) at 532 nm for x-polarization light and (b) at 633 nm for y-polarization light. Transmission of the metasurface (c) at 532 nm for x-polarization light and (d) at 633 nm for y-polarization light.
图 4 64种硅矩形柱对应的透过相位与理想组合相位的差值 (a) 532 nm波长、x线偏振态, (b) 633 nm波长、y线偏振态; 64种硅矩形柱对应的透过效率 (c) 532 nm波长、x线偏振态, (d) 633 nm波长、y线偏振态
Fig. 4. The deviation plot between the designed and ideal phase (a) at 532 nm for x-polarization light and (b) at 633 nm for y-polarization light. The transmission of the designed metasuface nanoblock (c) at 532 nm for x-polarization light and (d) at 633 nm for y-polarization light.
图 5 (a) 超表面结构示意图; (b) 超表面3 × 3 像素点内硅矩形柱几何参数的尺寸L(n, m), W(n, m), 分别在532 nm波长、x偏振光和633 nm波长、y偏振光入射下对应的透过相位值和透过效率
Fig. 5. (a) Schematic of metasurface; (b) phase matrix, transmission matrix, length of rectangular unit cell matrix and width of rectangular unit cell matrix. This is shown for 3 × 3 pixel subsection of the metasurface.
-
[1] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
[2] Yu N F, Capasso F 2014 Nat. Mater. 13 139
Google Scholar
[3] Khorasaninejad M, Crozier K B 2014 Nat. Commun. 5 5386
Google Scholar
[4] Khorasaninejad M, Zhu W, Crozier K B 2015 Optica 2 376
Google Scholar
[5] Khorasaninejad M, Chen W T, Devlin R C, Capasso F 2016 Science 352 1190
Google Scholar
[6] Huang K, Dong Z, Mei S, Zhang L, Liu Y, Liu H, Zhu H, Teng J H, Luk’yanchuk B, Yang J K W, Qiu C W 2016 Laser Photonics Rev. 10 500
Google Scholar
[7] Jiang Q, Jin G F, Cao L C 2019 Adv. Opt. Photonics 11 518
Google Scholar
[8] Genevet P, Capasso F 2015 Rep. Prog. Phys. 78 024401
Google Scholar
[9] Jin L, Dong Z, Mei S, Yu Y F, Wei Z, Pan Z, Rezaei S D, Li X, Kuznetsov A I, Kivshar Y S, Yang J K W, Qiu C W 2018 Nano Lett. 18 8016
Google Scholar
[10] Dong F, Feng H, Xu L, Wang B, Song Z, Zhang X, Yan L, Li X, Tian Y, Wang W, Sun L, Li Y, Chu W 2019 ACS Photonics 6 230
Google Scholar
[11] Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310
Google Scholar
[12] 徐平, 袁霞, 杨拓, 黄海漩, 唐少拓, 黄燕燕, 肖钰斐, 彭文达 2017 66 124201
Google Scholar
Xu P, Yuan X, Yang T, Huang H X, Tang S T, Huang Y Y, Xiao Y F, Peng W D 2017 Acta Phys. Sin. 66 124201
Google Scholar
[13] 徐平, 唐少拓, 袁霞, 黄海漩, 杨拓, 罗统政, 喻珺 2018 024202
Google Scholar
Xu P, Tang S T, Yuan X, Huang H X, Yang T, Luo T Z, Yu J 2018 Acta Phys. Sin. 024202
Google Scholar
[14] Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177
Google Scholar
[15] Pan Y, Huang H X, Lei L, Zou Y, Xiao Y F, Yang T, Xu P 2019 Appl. Sci. 9 407
Google Scholar
[16] Xu P, Yuan X, Huang H X, Yang T, Huang Y Y, Zhu T F, Tang S T 2016 Nanoscale Res. Letters. 11 485
Google Scholar
[17] Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I D, Liao C Y, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P 2014 Nano Lett. 14 225
Google Scholar
[18] Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A 2015 Nat. Commun 6 7069
Google Scholar
[19] Balthasar Mueller J P, Rubin N A, Devlin R C, Groever B, Capasso F 2017 Phys. Rev. Lett. 118 113901
Google Scholar
[20] Wang B, Dong F, Li Q T, Yang D, Sun C, Chen J, Song Z, Xu L, Chu W, Xiao Y F, Gong Q, Li Y 2016 Nano Lett. 16 5235
Google Scholar
[21] Wan W, Gao J, Yang X 2017 Opt. Mater. 5 1700541
Google Scholar
[22] Huang Y W, Chen W T, Tsai W Y, Wu P C, Wang C M, Sun G, Tsai D P 2015 Nano Lett. 15 3122
Google Scholar
[23] Qin F F, Liu Z Z Zhang Z, Zhang Q, Xiao J J 2018 Opt. Express 26 11577
Google Scholar
[24] Wan W, Gao J, Yang X 2106 ACS Nano 10 10671
[25] Eisenbach O, Avayu O, Ditcovski R, Ellenbogen T 2015 Opt. Express 23 3928
Google Scholar
[26] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2016 Opt. Express 24 18468
Google Scholar
[27] Tang S W, Ding F, Jiang T, Cai T, X H X 2018 Opt. Express 26 23760
Google Scholar
[28] Wei Q S, Sain B, Wang Y T, Reineke B, Li Xiao W, Huang L L, Zentgraf T 2019 Nano Lett. 19 8964
Google Scholar
[29] Arbabi A, Horie Y, Bagheri M, Faraon A 2015 Nat. Nano-technol. 10 937
Google Scholar
[30] Gerchberg R W, Saxton W O 1972 Optik 35 237
[31] Zhao W, Jiang H, Liu B, Song J, Jiang Y, Tang C, Li J 2016 Sci. Rep. 6 30613
Google Scholar
[32] Yoon G, Lee D, Nam K T, Rho J 2017 ACS Photonics 5 1643
[33] Sajedian I, Lee H, Rho J 2019 Sci. Rep. 9 10899
Google Scholar
计量
- 文章访问数: 9406
- PDF下载量: 378
- 被引次数: 0