搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超表面的多波束多模态太赫兹涡旋波产生

李国强 施宏宇 刘康 李博林 衣建甲 张安学 徐卓

引用本文:
Citation:

基于超表面的多波束多模态太赫兹涡旋波产生

李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓

Multi-beam multi-mode vortex beams generation based on metasurface in terahertz band

Li Guo-Qiang, Shi Hong-Yu, Liu Kang, Li Bo-Lin, Yi Jian-Jia, Zhang An-Xue, Xu Zhuo
PDF
HTML
导出引用
  • 太赫兹涡旋波束可以被用于高速通信及高分辨率成像, 其产生方式近年来受到了越来越多的关注. 本文提出了一种反射型超表面, 它可以在太赫兹频段产生四种不同模态的涡旋波束. 超表面单元结构基于几何相位原理, 由三层结构组成, 上下两层为金属结构, 中间层为介质, 其上层金属结构由圆环及椭圆贴片构成. 利用几何相位对圆极化波的调控作用, 可以实现由线极化波到圆极化波的分解, 并实现对不同圆极化波的灵活调控. 为了同时调控反射波的偏转方向, 本文利用平面反射阵列原理来计算每个超表面单元所需的相位补偿. 通过相位叠加原理, 在不同传播方向的波束中叠加不同模态的轨道角动量, 较好地实现了太赫兹频段复杂波束的调控效果. 仿真及测试结果表明设计的超表面能够在太赫兹频段产生带有 ± 1和 ± 2模态的4个波束, 在无线通信及高分辨率成像等方面有潜在应用价值.
    The generating of vortex beams in the terahertz (THz) band attracts significant attention due to their applications in high-speed communication and high-resolution imaging. In this article, a novel reflective metasurface working in the THz band is designed to generate four vortex beams with different topological charges in different directions. The unit cell is designed based on the geometric phase, and it consists of two metallic (gold) layers and one dielectric layer in between. The top layer of the unit cell includes an elliptic patch and a circular ring, and the bottom layer of the unit cell is a metallic ground. The reflection efficiency of the unit cell is very high due to the presence of metallic ground. To break through the limitations of traditional methods, the metasurface is a good choice to generate beams that carry orbital angular momentum (OAM). Using the concept of geometric phase, the reflection phase of reflective circular polarization (CP) electromagnetic waves can be controlled in an ingenious way. Owing to the property of the geometric phase, inverse phase shift can be achieved for left-handed circular polarization and right-handed circular polarization waves. By utilizing this trait of geometric phase, one can decompose a linear polarization wave into two orthogonal circular polarization waves and control their properties respectively. By rotating the top layer of the unit cell, 360-degree phase shift and the phase distribution satisfying the requirement for generating the multi-beam multi-mode vortex beam can be achieved. In order to control the direction and the topological charge of each beam, based on the geometric phase, the theory of reflectarray and the phase composition principle, the phase distribution of the reflective metasurface is calculated to provide the phase compensation to make the vortex beams point to certain directions. It is worthwhile to point out that the method presented in this paper provides a way to generate complex multi-mode vortex beams in the THz band. The simulations and measurements show that the metasurface can generate four vortex beams with topological charges l = ± 1 and ± 2 in different directions in the THz band. These results also indicate that our design has great potential applications in wireless communication and high-resolution imaging.
      通信作者: 施宏宇, honyo.shi1987@gmail.com
      Corresponding author: Shi Hong-Yu, honyo.shi1987@gmail.com
    [1]

    Karpowicz N, Zhong H, Zhang C L, Lin K L, Hwang J S, Xu J Z, Zhang X C 2005 Appl. Phys. Lett. 86 054105Google Scholar

    [2]

    Gompf B, Gebert N, Heer H, Dressel M 2007 Appl. Phys. Lett. 90 082104Google Scholar

    [3]

    Dobroiu A, Yamashita M, Ohshima Y N 2004 Appl. Opt. 43 5637Google Scholar

    [4]

    Chen Z F, Chen X Q, Tao L, et al. 2018 Nat. Commun. 9 4909Google Scholar

    [5]

    Fujishima M, Amakawa S, Takano K, Katayama K, Yoshida T 2015 IEICE Trans. Electron. E98-C 1091Google Scholar

    [6]

    Yan Y, Xie G D, Lavery M P J, et al. 2014 Nat. Commun. 5 4876Google Scholar

    [7]

    Liu K, Cheng Y Q, Gao Y, Li X, Qin Y L, Wang H Q 2017 Appl. Phys. Lett. 110 164102Google Scholar

    [8]

    Liu K, Li X, Gao Y, Wang H Q, Cheng Y Q 2017 J. Appl. Phys. 122 124903Google Scholar

    [9]

    Zhang Z F, Zheng S L, Chen Y L, Jin X F, Chi H, Zhang X M 2016 Sci. Rep. 6 25418Google Scholar

    [10]

    Tamburini F, Mari E, Thide B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [11]

    Bai X D, Liang X L, Li J P, Wang K, Geng J P, Jin R H 2016 Sci. Rep 6 27815Google Scholar

    [12]

    Shi H Y, Wang L Y, Chen X M, Zhang A X, Xu Z 2019 J. Appl. Phys. 126 063108Google Scholar

    [13]

    Yu S, Li L, Shi G, Zhu C, Zhou X, Shi Y 2016 Appl. Phys. Lett. 108 121903Google Scholar

    [14]

    Zhang X Q, Tian Z, Yue W S, Gu J Q, Zhang S, Han J G, Zhang W L 2013 Adv. Mater. 25 4567Google Scholar

    [15]

    Liu S, Zhang L, Yang Q L, et al. 2016 Adv. Opt. Mater. 4 1965Google Scholar

    [16]

    李晓楠, 周璐, 赵国忠 2019 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [17]

    周璐, 赵国忠, 李晓楠 2019 68 108701Google Scholar

    Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701Google Scholar

    [18]

    Zhao H, Quan B G, Wang X K, Gu C Z, Li J J, Zhang Y 2018 ACS Phot. 5 1726Google Scholar

    [19]

    Jiang Z H, Lei K, Wei H, Werner, D. H 2018 Phys. Rev. Appl. 9 064009Google Scholar

    [20]

    Shi H Y, Li J X, Zhang A X, Jiang Y S, Wang J F, Xu Zhuo, Xia Song 2015 IEEE Ant. Wir. Prop. Lett. 14 104Google Scholar

    [21]

    李佳辉, 张雅婷, 李吉宁, 等 2020 69 228101Google Scholar

    Li J H, Zhang Y T, Li J N, et al. 2020 Acta Phys. Sin. 69 228101Google Scholar

    [22]

    Deng R Y, Xu S H, Yang F, Li M K 2017 IEEE Ant. Wir. Prop. Lett. 16 884Google Scholar

    [23]

    Liu H X, Xue H, Liu Y J, Li L 2020 Appl. Sci. 10 7219Google Scholar

    [24]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [25]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Sci. 334 333Google Scholar

    [26]

    Nayeri P, Yang F, Elsherbeni A Z 2018 Reflectarray Antennas: Theory, Designs, and Applications (Hoboken: John Wiley & Sons) pp9−13

    [27]

    Shi H Y, Wang L Y, Peng G T, Chen X M, Li J X, Zhu S T, Zhang A X, Xu Z 2019 IEEE Ant. Wir. Prop. Lett. 18 59Google Scholar

  • 图 1  (a) 超表面局部相位分布; (b) 超表面局部仿真模型

    Fig. 1.  (a) Partial phase distribution of metasurface; (b) the partial simulation model of metasurface.

    图 2  单元结构图 (a) 上层结构逆时针旋转α; (b) 上层结构尺寸; (c) 透视图

    Fig. 2.  Schematics of unit cell: (a) Top layer rotated α degrees counterclockwise; (b) dimensions of top layer; (c) overall view.

    图 3  旋转角度α变化时同极化反射波的反射幅度及相位

    Fig. 3.  Reflection amplitude and phase of co-polarized reflected wave versus α.

    图 4  超表面远场分布的仿真结果

    Fig. 4.  Distribution of simulated far-field vortex beams.

    图 5  涡旋波束远场幅度(左图)和相位(右图)的仿真结果 (a), (b) l = –1; (c), (d) l = –2; (e), (f) l = 1; (g), (h) l = 2

    Fig. 5.  Simulated amplitude (left panel) and phase (right panel) of far-field vortex beams: (a), (b) l = –1; (c), (d) l = –2; (e), (f) l = 1; (g), (h) l = 2.

    图 6  仿真结果的OAM谱分析 (a) l = 1; (b) l = 2; (c) l = –1; (d) l = –2

    Fig. 6.  OAM spectrum weight for the simulated results: (a) l = 1; (b) l = 2; (c) l = –1; (d) l = –2.

    图 7  (a)加工的超表面; (b)测试环境; (c) 测试中的超表面

    Fig. 7.  (a) Photograph of the fabricated metasurface; (b) photograph of the measurement environment; (c) metasurface under test.

    图 8  涡旋波束近场幅度(上图)和相位(下图)的测试结果 (a), (b) l = –1; (c), (d) l = –2; (e), (f) l = 1; (g), (h) l = 2

    Fig. 8.  Measured amplitude (up panel) and phase (down panel) of near-field vortex beams: (a), (b) l = –1; (c), (d) l = –2; (e), (f) l = 1; (g), (h) l = 2.

    图 9  近场测试结果的频谱分析 (a) l = 1; (b) l = 2; (c) l = –1; (d) l = –2

    Fig. 9.  OAM spectrum weight for the measured near-field results: (a) l = 1; (b) l = 2; (c) l = –1; (d) l = –2.

    Baidu
  • [1]

    Karpowicz N, Zhong H, Zhang C L, Lin K L, Hwang J S, Xu J Z, Zhang X C 2005 Appl. Phys. Lett. 86 054105Google Scholar

    [2]

    Gompf B, Gebert N, Heer H, Dressel M 2007 Appl. Phys. Lett. 90 082104Google Scholar

    [3]

    Dobroiu A, Yamashita M, Ohshima Y N 2004 Appl. Opt. 43 5637Google Scholar

    [4]

    Chen Z F, Chen X Q, Tao L, et al. 2018 Nat. Commun. 9 4909Google Scholar

    [5]

    Fujishima M, Amakawa S, Takano K, Katayama K, Yoshida T 2015 IEICE Trans. Electron. E98-C 1091Google Scholar

    [6]

    Yan Y, Xie G D, Lavery M P J, et al. 2014 Nat. Commun. 5 4876Google Scholar

    [7]

    Liu K, Cheng Y Q, Gao Y, Li X, Qin Y L, Wang H Q 2017 Appl. Phys. Lett. 110 164102Google Scholar

    [8]

    Liu K, Li X, Gao Y, Wang H Q, Cheng Y Q 2017 J. Appl. Phys. 122 124903Google Scholar

    [9]

    Zhang Z F, Zheng S L, Chen Y L, Jin X F, Chi H, Zhang X M 2016 Sci. Rep. 6 25418Google Scholar

    [10]

    Tamburini F, Mari E, Thide B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [11]

    Bai X D, Liang X L, Li J P, Wang K, Geng J P, Jin R H 2016 Sci. Rep 6 27815Google Scholar

    [12]

    Shi H Y, Wang L Y, Chen X M, Zhang A X, Xu Z 2019 J. Appl. Phys. 126 063108Google Scholar

    [13]

    Yu S, Li L, Shi G, Zhu C, Zhou X, Shi Y 2016 Appl. Phys. Lett. 108 121903Google Scholar

    [14]

    Zhang X Q, Tian Z, Yue W S, Gu J Q, Zhang S, Han J G, Zhang W L 2013 Adv. Mater. 25 4567Google Scholar

    [15]

    Liu S, Zhang L, Yang Q L, et al. 2016 Adv. Opt. Mater. 4 1965Google Scholar

    [16]

    李晓楠, 周璐, 赵国忠 2019 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [17]

    周璐, 赵国忠, 李晓楠 2019 68 108701Google Scholar

    Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701Google Scholar

    [18]

    Zhao H, Quan B G, Wang X K, Gu C Z, Li J J, Zhang Y 2018 ACS Phot. 5 1726Google Scholar

    [19]

    Jiang Z H, Lei K, Wei H, Werner, D. H 2018 Phys. Rev. Appl. 9 064009Google Scholar

    [20]

    Shi H Y, Li J X, Zhang A X, Jiang Y S, Wang J F, Xu Zhuo, Xia Song 2015 IEEE Ant. Wir. Prop. Lett. 14 104Google Scholar

    [21]

    李佳辉, 张雅婷, 李吉宁, 等 2020 69 228101Google Scholar

    Li J H, Zhang Y T, Li J N, et al. 2020 Acta Phys. Sin. 69 228101Google Scholar

    [22]

    Deng R Y, Xu S H, Yang F, Li M K 2017 IEEE Ant. Wir. Prop. Lett. 16 884Google Scholar

    [23]

    Liu H X, Xue H, Liu Y J, Li L 2020 Appl. Sci. 10 7219Google Scholar

    [24]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [25]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Sci. 334 333Google Scholar

    [26]

    Nayeri P, Yang F, Elsherbeni A Z 2018 Reflectarray Antennas: Theory, Designs, and Applications (Hoboken: John Wiley & Sons) pp9−13

    [27]

    Shi H Y, Wang L Y, Peng G T, Chen X M, Li J X, Zhu S T, Zhang A X, Xu Z 2019 IEEE Ant. Wir. Prop. Lett. 18 59Google Scholar

  • [1] 孟祥裕, 李涛, 余彬彬, 邰永航. 探究四聚体超表面中多极准连续域束缚态的调控机制.  , 2024, 73(10): 107801. doi: 10.7498/aps.73.20240272
    [2] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面.  , 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [3] 张鸿伟, 蔡仁昊, 李吉宁, 钟凯, 王与烨, 徐德刚, 姚建铨. 基于超表面的太赫兹与中长波红外高效分光器件.  , 2024, 73(19): 197801. doi: 10.7498/aps.73.20241066
    [4] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性.  , 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [5] 魏涛, 张玉洁, 葛宏义, 蒋玉英, 吴旭阳, 孙振雨, 季晓迪, 补雨薇, 贾柯柯. 复合相位调控的波束转向可控反射型超表面.  , 2024, 73(22): 224201. doi: 10.7498/aps.73.20240764
    [6] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面.  , 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [7] 于博, 庄书磊, 王正心, 王曼诗, 郭兰军, 李鑫煜, 郭文瑞, 苏文明, 龚诚, 刘伟伟. 基于纳米印刷技术的双螺旋太赫兹可调超表面.  , 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [8] 仲敏, 李九生. 频率可切换太赫兹涡旋波束产生器.  , 2022, 71(21): 217401. doi: 10.7498/aps.71.20221184
    [9] 黄帅, 吴天昊, 管春生, 丁旭旻, 吴昱明, 吴群, 唐晓斌. 波导谐振腔集成馈电型波前调控 惠更斯超表面研究.  , 2022, 71(22): 224101. doi: 10.7498/aps.71.20221284
    [10] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置.  , 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [11] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [12] 张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军. 编码超构表面实现双波束独立可重构.  , 2021, 70(17): 178102. doi: 10.7498/aps.70.20210344
    [13] 郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪. 一种复合型极化转换表面及其在天线辐射散射调控中的应用.  , 2020, 69(23): 234102. doi: 10.7498/aps.69.20200797
    [14] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控.  , 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [15] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生.  , 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [16] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [17] 李小兵, 陆卫兵, 刘震国, 陈昊. 基于可调石墨烯超表面的宽角度动态波束控制.  , 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [18] 陈欢, 凌晓辉, 何武光, 李钱光, 易煦农. 基于Pancharatnam-Berry相位调控产生贝塞尔光束.  , 2017, 66(4): 044203. doi: 10.7498/aps.66.044203
    [19] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面.  , 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [20] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面.  , 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
计量
  • 文章访问数:  7348
  • PDF下载量:  361
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 修回日期:  2021-06-22
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-09-20

/

返回文章
返回
Baidu
map