-
In this paper, we propose a new method to realize both polarization-multiplexing and wavelength-multiplexing using a simple structure, which can realize hologram by the multiplexing of double wavelengths and double polarization in the visible band. Our design can reduce color cross-talk and have a higher diffraction efficiency. We design a transmission metasurface composed of simple rectangular cells. Firstly, we establish the relationship of structural parameters with the transmission phase under various incident conditions of light beams. Then we propose a fitness function that can optimize the structural parameters of the unit cell at each pixel point, which can display different images by 532 nm x-polarization and 633 nm y-polarization incident light beams respectively. Finally, finite difference time domain method is used to analyze the structure, and the holographic result fits the theoretical design very well. This work proposes using single metasurface structure to solve the problems of wavelength cross-talk appearing when using simple structures, and will have great importance in coding and anti-counterfeiting.
-
Keywords:
- metasurface /
- holographic /
- double wavelengths /
- double polarization
[1] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[2] Yu N F, Capasso F 2014 Nat. Mater. 13 139Google Scholar
[3] Khorasaninejad M, Crozier K B 2014 Nat. Commun. 5 5386Google Scholar
[4] Khorasaninejad M, Zhu W, Crozier K B 2015 Optica 2 376Google Scholar
[5] Khorasaninejad M, Chen W T, Devlin R C, Capasso F 2016 Science 352 1190Google Scholar
[6] Huang K, Dong Z, Mei S, Zhang L, Liu Y, Liu H, Zhu H, Teng J H, Luk’yanchuk B, Yang J K W, Qiu C W 2016 Laser Photonics Rev. 10 500Google Scholar
[7] Jiang Q, Jin G F, Cao L C 2019 Adv. Opt. Photonics 11 518Google Scholar
[8] Genevet P, Capasso F 2015 Rep. Prog. Phys. 78 024401Google Scholar
[9] Jin L, Dong Z, Mei S, Yu Y F, Wei Z, Pan Z, Rezaei S D, Li X, Kuznetsov A I, Kivshar Y S, Yang J K W, Qiu C W 2018 Nano Lett. 18 8016Google Scholar
[10] Dong F, Feng H, Xu L, Wang B, Song Z, Zhang X, Yan L, Li X, Tian Y, Wang W, Sun L, Li Y, Chu W 2019 ACS Photonics 6 230Google Scholar
[11] Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar
[12] 徐平, 袁霞, 杨拓, 黄海漩, 唐少拓, 黄燕燕, 肖钰斐, 彭文达 2017 66 124201Google Scholar
Xu P, Yuan X, Yang T, Huang H X, Tang S T, Huang Y Y, Xiao Y F, Peng W D 2017 Acta Phys. Sin. 66 124201Google Scholar
[13] 徐平, 唐少拓, 袁霞, 黄海漩, 杨拓, 罗统政, 喻珺 2018 024202Google Scholar
Xu P, Tang S T, Yuan X, Huang H X, Yang T, Luo T Z, Yu J 2018 Acta Phys. Sin. 024202Google Scholar
[14] Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177Google Scholar
[15] Pan Y, Huang H X, Lei L, Zou Y, Xiao Y F, Yang T, Xu P 2019 Appl. Sci. 9 407Google Scholar
[16] Xu P, Yuan X, Huang H X, Yang T, Huang Y Y, Zhu T F, Tang S T 2016 Nanoscale Res. Letters. 11 485Google Scholar
[17] Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I D, Liao C Y, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P 2014 Nano Lett. 14 225Google Scholar
[18] Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A 2015 Nat. Commun 6 7069Google Scholar
[19] Balthasar Mueller J P, Rubin N A, Devlin R C, Groever B, Capasso F 2017 Phys. Rev. Lett. 118 113901Google Scholar
[20] Wang B, Dong F, Li Q T, Yang D, Sun C, Chen J, Song Z, Xu L, Chu W, Xiao Y F, Gong Q, Li Y 2016 Nano Lett. 16 5235Google Scholar
[21] Wan W, Gao J, Yang X 2017 Opt. Mater. 5 1700541Google Scholar
[22] Huang Y W, Chen W T, Tsai W Y, Wu P C, Wang C M, Sun G, Tsai D P 2015 Nano Lett. 15 3122Google Scholar
[23] Qin F F, Liu Z Z Zhang Z, Zhang Q, Xiao J J 2018 Opt. Express 26 11577Google Scholar
[24] Wan W, Gao J, Yang X 2106 ACS Nano 10 10671
[25] Eisenbach O, Avayu O, Ditcovski R, Ellenbogen T 2015 Opt. Express 23 3928Google Scholar
[26] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2016 Opt. Express 24 18468Google Scholar
[27] Tang S W, Ding F, Jiang T, Cai T, X H X 2018 Opt. Express 26 23760Google Scholar
[28] Wei Q S, Sain B, Wang Y T, Reineke B, Li Xiao W, Huang L L, Zentgraf T 2019 Nano Lett. 19 8964Google Scholar
[29] Arbabi A, Horie Y, Bagheri M, Faraon A 2015 Nat. Nano-technol. 10 937Google Scholar
[30] Gerchberg R W, Saxton W O 1972 Optik 35 237
[31] Zhao W, Jiang H, Liu B, Song J, Jiang Y, Tang C, Li J 2016 Sci. Rep. 6 30613Google Scholar
[32] Yoon G, Lee D, Nam K T, Rho J 2017 ACS Photonics 5 1643
[33] Sajedian I, Lee H, Rho J 2019 Sci. Rep. 9 10899Google Scholar
-
图 2 超表面微元相位分布 (a) 532 nm波长、x线偏振态, (b) 633 nm波长、y线偏振态; 超表面微元透过效率分布 (c) 532 nm波长、x线偏振态, (d) 633 nm波长、y线偏振态
Figure 2. Phase of the metasurface (a) at 532 nm for x-polarization light and (b) at 633 nm for y-polarization light. Transmission of the metasurface (c) at 532 nm for x-polarization light and (d) at 633 nm for y-polarization light.
图 4 64种硅矩形柱对应的透过相位与理想组合相位的差值 (a) 532 nm波长、x线偏振态, (b) 633 nm波长、y线偏振态; 64种硅矩形柱对应的透过效率 (c) 532 nm波长、x线偏振态, (d) 633 nm波长、y线偏振态
Figure 4. The deviation plot between the designed and ideal phase (a) at 532 nm for x-polarization light and (b) at 633 nm for y-polarization light. The transmission of the designed metasuface nanoblock (c) at 532 nm for x-polarization light and (d) at 633 nm for y-polarization light.
图 5 (a) 超表面结构示意图; (b) 超表面3 × 3 像素点内硅矩形柱几何参数的尺寸L(n, m), W(n, m), 分别在532 nm波长、x偏振光和633 nm波长、y偏振光入射下对应的透过相位值和透过效率
Figure 5. (a) Schematic of metasurface; (b) phase matrix, transmission matrix, length of rectangular unit cell matrix and width of rectangular unit cell matrix. This is shown for 3 × 3 pixel subsection of the metasurface.
-
[1] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[2] Yu N F, Capasso F 2014 Nat. Mater. 13 139Google Scholar
[3] Khorasaninejad M, Crozier K B 2014 Nat. Commun. 5 5386Google Scholar
[4] Khorasaninejad M, Zhu W, Crozier K B 2015 Optica 2 376Google Scholar
[5] Khorasaninejad M, Chen W T, Devlin R C, Capasso F 2016 Science 352 1190Google Scholar
[6] Huang K, Dong Z, Mei S, Zhang L, Liu Y, Liu H, Zhu H, Teng J H, Luk’yanchuk B, Yang J K W, Qiu C W 2016 Laser Photonics Rev. 10 500Google Scholar
[7] Jiang Q, Jin G F, Cao L C 2019 Adv. Opt. Photonics 11 518Google Scholar
[8] Genevet P, Capasso F 2015 Rep. Prog. Phys. 78 024401Google Scholar
[9] Jin L, Dong Z, Mei S, Yu Y F, Wei Z, Pan Z, Rezaei S D, Li X, Kuznetsov A I, Kivshar Y S, Yang J K W, Qiu C W 2018 Nano Lett. 18 8016Google Scholar
[10] Dong F, Feng H, Xu L, Wang B, Song Z, Zhang X, Yan L, Li X, Tian Y, Wang W, Sun L, Li Y, Chu W 2019 ACS Photonics 6 230Google Scholar
[11] Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar
[12] 徐平, 袁霞, 杨拓, 黄海漩, 唐少拓, 黄燕燕, 肖钰斐, 彭文达 2017 66 124201Google Scholar
Xu P, Yuan X, Yang T, Huang H X, Tang S T, Huang Y Y, Xiao Y F, Peng W D 2017 Acta Phys. Sin. 66 124201Google Scholar
[13] 徐平, 唐少拓, 袁霞, 黄海漩, 杨拓, 罗统政, 喻珺 2018 024202Google Scholar
Xu P, Tang S T, Yuan X, Huang H X, Yang T, Luo T Z, Yu J 2018 Acta Phys. Sin. 024202Google Scholar
[14] Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177Google Scholar
[15] Pan Y, Huang H X, Lei L, Zou Y, Xiao Y F, Yang T, Xu P 2019 Appl. Sci. 9 407Google Scholar
[16] Xu P, Yuan X, Huang H X, Yang T, Huang Y Y, Zhu T F, Tang S T 2016 Nanoscale Res. Letters. 11 485Google Scholar
[17] Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I D, Liao C Y, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P 2014 Nano Lett. 14 225Google Scholar
[18] Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A 2015 Nat. Commun 6 7069Google Scholar
[19] Balthasar Mueller J P, Rubin N A, Devlin R C, Groever B, Capasso F 2017 Phys. Rev. Lett. 118 113901Google Scholar
[20] Wang B, Dong F, Li Q T, Yang D, Sun C, Chen J, Song Z, Xu L, Chu W, Xiao Y F, Gong Q, Li Y 2016 Nano Lett. 16 5235Google Scholar
[21] Wan W, Gao J, Yang X 2017 Opt. Mater. 5 1700541Google Scholar
[22] Huang Y W, Chen W T, Tsai W Y, Wu P C, Wang C M, Sun G, Tsai D P 2015 Nano Lett. 15 3122Google Scholar
[23] Qin F F, Liu Z Z Zhang Z, Zhang Q, Xiao J J 2018 Opt. Express 26 11577Google Scholar
[24] Wan W, Gao J, Yang X 2106 ACS Nano 10 10671
[25] Eisenbach O, Avayu O, Ditcovski R, Ellenbogen T 2015 Opt. Express 23 3928Google Scholar
[26] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2016 Opt. Express 24 18468Google Scholar
[27] Tang S W, Ding F, Jiang T, Cai T, X H X 2018 Opt. Express 26 23760Google Scholar
[28] Wei Q S, Sain B, Wang Y T, Reineke B, Li Xiao W, Huang L L, Zentgraf T 2019 Nano Lett. 19 8964Google Scholar
[29] Arbabi A, Horie Y, Bagheri M, Faraon A 2015 Nat. Nano-technol. 10 937Google Scholar
[30] Gerchberg R W, Saxton W O 1972 Optik 35 237
[31] Zhao W, Jiang H, Liu B, Song J, Jiang Y, Tang C, Li J 2016 Sci. Rep. 6 30613Google Scholar
[32] Yoon G, Lee D, Nam K T, Rho J 2017 ACS Photonics 5 1643
[33] Sajedian I, Lee H, Rho J 2019 Sci. Rep. 9 10899Google Scholar
Catalog
Metrics
- Abstract views: 8501
- PDF Downloads: 355
- Cited By: 0