-
In the application of atmospheric pressure plasma jet, because the frequency of AC power supply is limited in the kHz range, the research on the influence of power supply electrical parameters on discharge is basically aimed at the variation of plasma jet characteristics with a single driving electrical parameter ( such as voltage and frequency). However, the discharge power usually changes with a single electrical parameter changing, which can undoubtedly affect the discharge performances including the plasma physical parameters and generated reactive species, resulting in the failure to reflect the influence of the single driving parameter on the discharge. In this study, an atmospheric pressure argon plasma jet is driven by a home-made AC power supply with adjustable pulse modulated duty cycle. And combining the diagnosis of the optical emission spectrum and the optical absorption spectrum, the influences of the voltage, frequency and pulse modulated duty cycle parameters on the gas temperature Tg, electron excitation temperature Texc, electron density ne, and OH radical particle number density of the plasma jet are studied under a constant discharge power of 2 W. The results show that at the constant power, the electron density ne does not change with the variation of electrical parameters as the linkage change of electrical parameters will offset the influence of a single parameter on the electron density, while the gas temperature Tg, electron excitation temperature Texc, and OH radical particle density are most affected by the pulse modulated duty cycle, followed by driving voltage, and the frequency effect is the smallest. Under the constant power, as the frequency decreases, the voltage will increase, and also the gas temperature Tg, electron excitation temperature Texc, and OH radical particle number density will increase. On the contrary, although the voltage also increases as the pulse modulated duty cycle decreases, the gas temperature Tg, electron excitation temperature Texc, and OH radical particle number density are all reduced. In addition, the results indicate that reducing the duty cycle of AC power can make the atmospheric pressure plasma jet produce more OH radicals at lower gas temperature. This study provides a new insight into the influence of electrical parameters on the characteristics of atmospheric pressure plasma jets under constant power, and also presents a guidance for choosing power parameters of plasma jets with low gas temperature and high density of reactive species, which is conducive to the development of atmospheric pressure plasma jets in biomedicine and other fields.
-
Keywords:
- atmospheric pressure plasma jet /
- spectral diagnosis /
- plasma characterization /
- reactive species
[1] Fallon M, Kennedy S, Kumar S, Daniels S, Humphreys H 2021 Plasma Med. 11 15
[2] Wang T, Wang J H, Wang S Q, lv L, Li M, Shi L P 2021 Appl. Surf. Sci. 570 151258Google Scholar
[3] 张海宝, 陈强 2021 70 095203Google Scholar
Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203Google Scholar
[4] Kong X H, Xue S, Li H Y, Yang W M, Martynovich E F, Ning W J, Wang R X 2022 Plasma Sources Sci. Technol. 31 095010Google Scholar
[5] Wang R X, Xia Z C, Kong X H, Xue S, Wang H Y 2022 Surf. Coat. Technol. 437 128365Google Scholar
[6] Shimizu T, Ikehara Y 2017 J. Phys. D: Appl. Phys. 50 503001Google Scholar
[7] Huang Y M, Chang W C, Hsu C L 2021 Food Res. Int. 141 110108Google Scholar
[8] Lu X P, Keudar M, Laroussi M, Choi E, Szili E J, Ostrikov K 2019 Mater. Sci. Eng., R 138 36Google Scholar
[9] Schweigert I, Zakrevsky D, Milakhina E, Gugin P, Biryukov M, Patrakova E, Koval O 2022 Plasma Phys. Control. Fusion 64 044015Google Scholar
[10] Pang B L, Liu Z J, Wang S T, Gao Y T, Zhang H Y, Zhang F, Tantai X M, Xu D H, Liu D X, Kong M G 2021 J. Appl. Phys. 130 153301Google Scholar
[11] Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Ostrikov K 2021 J. Phys. D: Appl. Phys. 54 065201Google Scholar
[12] Liu Z J, Wang S T, Pang B L, Gao Y T, Li Q S, Xu D H, Liu D X, Zhou R W 2022 Plasma Sources Sci. Technol. 31 05LT03Google Scholar
[13] Guo L, Xu R B, Guo L, Liu Z C, Zhao Y M, Liu D X, Zhang L, Chen H L, Kong M G 2018 Appl. Environ Microbiol. 84 e00726
[14] Xiong Q, Lu X, Ostrikov K, Jiang Z Y 2009 Phys. Plasmas 16 043505Google Scholar
[15] Kim D B, Rhee J K, Gweon B, Moon S Y, Choe W 2007 Appl. Phys. Lett. 91 151502Google Scholar
[16] Gott R P, Xu K G 2019 IEEE Trans. Plasma Sci. 47 4988Google Scholar
[17] Qian M Y, Fan Q Q, Ren C S, Wang D Z, Nie Q Y, Zhang J L, Wen X Q 2012 Thin Solid Films 521 265Google Scholar
[18] Moon S Y, Kim D B, Gweon B, Choe W 2008 Appl. Phys. Lett. 93 2215006
[19] Long Y X, Li H X, Meng X S, Li J, Xiang Z C 2018 Mod. Phys. Lett. B 32 1850315
[20] Yuan H, Wang W C, Yang D Z, Zhao Z L, Zhang L, Wang S 2017 Plasma Sci. Technol. 19 125401Google Scholar
[21] 付强, 王聪, 王语菲, 常正实 2022 71 115204Google Scholar
Fu Q, Wang C, Wang Y F, Chang Z S 2022 Acta Phys. Sin. 71 115204Google Scholar
[22] Liu K, Lei J, Zheng Z, Zhu Z, Liu S 2018 Appl. Surf. Sci. 458 183Google Scholar
[23] Yang D Z, Zhou X F, Liang J P, Xu Q N, Wang H L, Yang K, Wang B, Wang W C 2021 J. Phys. D: Appl. Phys. 54 244002Google Scholar
[24] Liu K, Zuo J, Ran C F, Yang M H, Geng W Q, Liu S T, Ostrikov K 2022 Phys. Chem. Chem. Phys. 24 8940Google Scholar
[25] Liu K, Geng W Q, Zhou X F, Duan Q S, Zheng Z F, Ostrikov K 2023 Plasma Sources Sci. Technol. 32 025005Google Scholar
[26] 刘坤, 左杰, 周雄峰, 冉从福, 杨明昊, 耿文强 2023 72 055201Google Scholar
Liu K, Zuo J, Zhou X F, Ran C F, Yang M H, Geng W Q 2023 Acta Phys. Sin. 72 055201Google Scholar
[27] Yuan H, Feng J, Yang D Z, Zhou X F, Liang J P, Zhang L, Zhao Z L, Wang W C 2020 J. Appl. Phys. 128 093303Google Scholar
[28] 王伟, 王永刚, 吴忠航, 饶俊峰, 姜松, 李孜 2023 光谱学与光谱分析 43 455Google Scholar
Wang W, Wang Y G, WU Z H, Rao J F, Jiang S, Li Z 2023 Spectrosc. Spectral Anal. 43 455Google Scholar
[29] Liu K, Xia H T, Yang M H, Geng W Q, Zuo J, Ostrikov K 2022 Vacuum 198 110901Google Scholar
[30] Tu X, Cheron B G, Yan J H, Cen K F 2007 Plasma Sources Sci. Technol. 16 803Google Scholar
[31] Peng B F, Jiang N, Shang K F, Lu N, Li J, Wu Y 2022 J. Phys. D:Appl. Phys. 55 265202Google Scholar
[32] Bruggeman P, Schram D, Gonzalez M 2009 Plasma Sources Sci. Technol. 18 025017Google Scholar
[33] Belostotskiy S G, Ouk T, Donnelly V M 2010 J. Appl. Phys. 107 05330
[34] Zhou X F, Wang W C, Yang D Z, Liang J P, Zhao Z L, Yuan H 2019 Plasma Process Polym. 16 e1800124Google Scholar
[35] Gaens W V, Bogaerts A 2013 J Phys. D:Appl. Phys. 46 275201Google Scholar
[36] Itikawa Y, Mason N 2005 J. Phys. Chem. Ref. Data 34 1Google Scholar
[37] Zhou X F, Zhao Z L, Liang J P, Yuan H, Wang W C, Yang D Z 2019 Plasma Process Polym. 16 e1900001
-
表 1 固定功率2 W时不同频率和脉冲调制占空比下的电压 (单位: kV)
Table 1. The voltage (unit: kV) at different frequencies and duty cycles under a constant power of 2 W.
频率/kHz 脉冲调制占空比 100% 70% 50% 30% 7 11.0 13.0 14.5 16.4 8 10.4 12.4 14.0 15.7 9 9.9 11.9 13.5 15.1 10 9.3 11.4 13.0 14.6 11 8.8 11.0 12.5 13.9 12 8.4 10.4 12.0 13.1 13 7.9 9.7 11.0 11.9 14 7.5 8.9 10.0 11.3 表 2 玻尔兹曼图解法计算电子激发温度用到的Ar原子谱线相关参数
Table 2. The relevant parameters of Ar atomic spectral lines used in calculating electron excitation temperature by Boltzmann diagram method.
λji/nm Ej/cm–1 gj Aji/(106 s–1) 706.7 107289.7 5 3.80 727.3 107496.4 3 1.83 738.4 107289.7 5 8.47 750.4 108722.2 1 44.50 751.5 107054.3 1 40.20 763.5 106237.5 5 24.50 772.4 107496.4 3 11.70 794.8 107131.7 3 18.60 800.6 106237.5 5 4.90 801.5 105617.3 5 9.28 826.5 107496.4 3 15.30 表 3 大气压氩气等离子体射流生成·OH的相关反应式
Table 3. The relevant generation pathways of ·OH in atmospheric pressure argon plasma jet.
反应方程式 反应系数 编号 文献 Ar + e → Ar* + e $f\left( { {T_{\rm{e}}} } \right)$ R1 [34] Ar* + H2O → Ar + ·H +··OH $ 2.10 \times {10^{ - 10}} $ R2 [35] e + H2O → H2O+ + 2 e $f\left( { {T_{\rm{e}}} } \right)$ R3 [36] e + H2O+ → ·H +··OH $ 1.38 \times {10^{ - 8}} $ R4 [35] e + H2O → e + ·H +··OH $f\left( { {T_{\rm{e}}} } \right)$ R5 [37] e + H2O → 2 e + H+ +··OH $f\left( { {T_{\rm{e}}} } \right)$ R6 [36] -
[1] Fallon M, Kennedy S, Kumar S, Daniels S, Humphreys H 2021 Plasma Med. 11 15
[2] Wang T, Wang J H, Wang S Q, lv L, Li M, Shi L P 2021 Appl. Surf. Sci. 570 151258Google Scholar
[3] 张海宝, 陈强 2021 70 095203Google Scholar
Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203Google Scholar
[4] Kong X H, Xue S, Li H Y, Yang W M, Martynovich E F, Ning W J, Wang R X 2022 Plasma Sources Sci. Technol. 31 095010Google Scholar
[5] Wang R X, Xia Z C, Kong X H, Xue S, Wang H Y 2022 Surf. Coat. Technol. 437 128365Google Scholar
[6] Shimizu T, Ikehara Y 2017 J. Phys. D: Appl. Phys. 50 503001Google Scholar
[7] Huang Y M, Chang W C, Hsu C L 2021 Food Res. Int. 141 110108Google Scholar
[8] Lu X P, Keudar M, Laroussi M, Choi E, Szili E J, Ostrikov K 2019 Mater. Sci. Eng., R 138 36Google Scholar
[9] Schweigert I, Zakrevsky D, Milakhina E, Gugin P, Biryukov M, Patrakova E, Koval O 2022 Plasma Phys. Control. Fusion 64 044015Google Scholar
[10] Pang B L, Liu Z J, Wang S T, Gao Y T, Zhang H Y, Zhang F, Tantai X M, Xu D H, Liu D X, Kong M G 2021 J. Appl. Phys. 130 153301Google Scholar
[11] Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Ostrikov K 2021 J. Phys. D: Appl. Phys. 54 065201Google Scholar
[12] Liu Z J, Wang S T, Pang B L, Gao Y T, Li Q S, Xu D H, Liu D X, Zhou R W 2022 Plasma Sources Sci. Technol. 31 05LT03Google Scholar
[13] Guo L, Xu R B, Guo L, Liu Z C, Zhao Y M, Liu D X, Zhang L, Chen H L, Kong M G 2018 Appl. Environ Microbiol. 84 e00726
[14] Xiong Q, Lu X, Ostrikov K, Jiang Z Y 2009 Phys. Plasmas 16 043505Google Scholar
[15] Kim D B, Rhee J K, Gweon B, Moon S Y, Choe W 2007 Appl. Phys. Lett. 91 151502Google Scholar
[16] Gott R P, Xu K G 2019 IEEE Trans. Plasma Sci. 47 4988Google Scholar
[17] Qian M Y, Fan Q Q, Ren C S, Wang D Z, Nie Q Y, Zhang J L, Wen X Q 2012 Thin Solid Films 521 265Google Scholar
[18] Moon S Y, Kim D B, Gweon B, Choe W 2008 Appl. Phys. Lett. 93 2215006
[19] Long Y X, Li H X, Meng X S, Li J, Xiang Z C 2018 Mod. Phys. Lett. B 32 1850315
[20] Yuan H, Wang W C, Yang D Z, Zhao Z L, Zhang L, Wang S 2017 Plasma Sci. Technol. 19 125401Google Scholar
[21] 付强, 王聪, 王语菲, 常正实 2022 71 115204Google Scholar
Fu Q, Wang C, Wang Y F, Chang Z S 2022 Acta Phys. Sin. 71 115204Google Scholar
[22] Liu K, Lei J, Zheng Z, Zhu Z, Liu S 2018 Appl. Surf. Sci. 458 183Google Scholar
[23] Yang D Z, Zhou X F, Liang J P, Xu Q N, Wang H L, Yang K, Wang B, Wang W C 2021 J. Phys. D: Appl. Phys. 54 244002Google Scholar
[24] Liu K, Zuo J, Ran C F, Yang M H, Geng W Q, Liu S T, Ostrikov K 2022 Phys. Chem. Chem. Phys. 24 8940Google Scholar
[25] Liu K, Geng W Q, Zhou X F, Duan Q S, Zheng Z F, Ostrikov K 2023 Plasma Sources Sci. Technol. 32 025005Google Scholar
[26] 刘坤, 左杰, 周雄峰, 冉从福, 杨明昊, 耿文强 2023 72 055201Google Scholar
Liu K, Zuo J, Zhou X F, Ran C F, Yang M H, Geng W Q 2023 Acta Phys. Sin. 72 055201Google Scholar
[27] Yuan H, Feng J, Yang D Z, Zhou X F, Liang J P, Zhang L, Zhao Z L, Wang W C 2020 J. Appl. Phys. 128 093303Google Scholar
[28] 王伟, 王永刚, 吴忠航, 饶俊峰, 姜松, 李孜 2023 光谱学与光谱分析 43 455Google Scholar
Wang W, Wang Y G, WU Z H, Rao J F, Jiang S, Li Z 2023 Spectrosc. Spectral Anal. 43 455Google Scholar
[29] Liu K, Xia H T, Yang M H, Geng W Q, Zuo J, Ostrikov K 2022 Vacuum 198 110901Google Scholar
[30] Tu X, Cheron B G, Yan J H, Cen K F 2007 Plasma Sources Sci. Technol. 16 803Google Scholar
[31] Peng B F, Jiang N, Shang K F, Lu N, Li J, Wu Y 2022 J. Phys. D:Appl. Phys. 55 265202Google Scholar
[32] Bruggeman P, Schram D, Gonzalez M 2009 Plasma Sources Sci. Technol. 18 025017Google Scholar
[33] Belostotskiy S G, Ouk T, Donnelly V M 2010 J. Appl. Phys. 107 05330
[34] Zhou X F, Wang W C, Yang D Z, Liang J P, Zhao Z L, Yuan H 2019 Plasma Process Polym. 16 e1800124Google Scholar
[35] Gaens W V, Bogaerts A 2013 J Phys. D:Appl. Phys. 46 275201Google Scholar
[36] Itikawa Y, Mason N 2005 J. Phys. Chem. Ref. Data 34 1Google Scholar
[37] Zhou X F, Zhao Z L, Liang J P, Yuan H, Wang W C, Yang D Z 2019 Plasma Process Polym. 16 e1900001
Catalog
Metrics
- Abstract views: 4080
- PDF Downloads: 128
- Cited By: 0