Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of argon discharge plasma jet: comprehensive effects of discharge voltage, gas flow rate, and external magnetic field

Zhou Xiong-Feng Chen Bin Liu Kun

Citation:

Characteristics of argon discharge plasma jet: comprehensive effects of discharge voltage, gas flow rate, and external magnetic field

Zhou Xiong-Feng, Chen Bin, Liu Kun
cstr: 32037.14.aps.73.20241166
PDF
HTML
Get Citation
  • Atmospheric pressure plasma jet has received widespread attention due to its enormous potential applications in various fields, and its discharge conditions play a key role in changing their physical and chemical properties and ultimately determining its application effectiveness. Factors such as discharge voltage, gas flow rate, and the introduction of an external magnetic field intricately influence the performance of plasma jet. The combined effects of any two of these factors can yield enhanced outcomes, while also bringing complexity to the discharge phenomenon. However, there is currently a lack of research on the combined effects of external magnetic field, discharge voltage, and gas flow rate on the characteristics of plasma jets, making it difficult to comprehensively evaluate the discharge characteristics of plasma jet under multiple discharge conditions. Therefore, this paper focuses on an AC excited atmospheric pressure argon plasma jet and investigates the combined effects of external magnetic field, discharge voltage, and gas flow rate on various characteristic parameters of the plasma jet, including macroscopic morphology, discharge power, gas temperature Tg, electron excitation temperature Texc, electron density ne, emission intensity of excited state Ar* particles, and number density of ground state ·OH particles by using methods of camera shooting, and electrical parameter measurement, spectroscopic analysis of emission and absorption spectra. The obtained results are shown below. The effect of discharge voltage on the characteristic parameters of the plasma jet is not affected by gas flow rate or the existence of an external magnetic field. The increase of discharge voltage can improve jet performance by enhancing the discharge power, extending the plasma plume length, elevating the gas temperature Tg and electron excitation temperature Texc, increasing the electron density ne and emission intensity of excited state Ar* particles, as well as the number density of ground state ·OH particles. The addition of an external magnetic field can improve the jet performance without significantly changing the discharge power, and the extent of this improvement is influenced by the mode of magnetic field action. Notably, the enhancement of jet performance is most significant when the magnetic field selectively targets the plasma plume, excluding direct interaction with electrode discharge region. The effect of gas flow rate on jet performance becomes intricate: it is intertwined with the effect of voltage and the effect of external magnetic field. When an external magnetic field is present, excessive voltage and gas flow rate may reduce the number density of ground state ·OH particles generated by plasma jet. This underscores the need for a detailed understanding when optimizing jet performance under various discharge conditions. Simply combining the optimal conditions for each individual factor does not guarantee the achievement of peak jet performance when all three discharge conditions work synergistically. This study presents valuable insights into the discharge characteristics of plasma jet under different discharge conditions, providing guidance for optimizing the performance of plasma jet and promoting the advancement of atmospheric pressure plasma jet technology in different application fields.
      Corresponding author: Liu Kun, liukun@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52307160) and the Fundamental Research Funds for the Central Universities (Grant No. 2023CDJXY-029).
    [1]

    Ma L, Chen Y, Gong Q, Cheng Z, Ran C F, Liu K, Shi C M 2023 Free Rad. Biol. Medic. 204 184Google Scholar

    [2]

    Wang X L, Liu J, Li Q X, Li L, Li S R, Ding Y H, Zhao T, Sun Y, Zhang Y T 2023 High Volt. 8 841Google Scholar

    [3]

    Xi D K, Zhang X H, Yang S Z, Yap S S, Ishikawa K, Hori M, Yap S L 2022 Chin. Phys. B 31 128201Google Scholar

    [4]

    Kong X H, Xue S, Li H Y, Yang W M, Martynovich E F, Ning W J, Wang R X 2022 Plasma Sources Sci. Technol. 31 095010Google Scholar

    [5]

    Cui X L, Xu Z B, Zhou Y Y, Zhu X, Wang S, Fang Z 2022 Surf. Coat. Technol. 451 129066Google Scholar

    [6]

    孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭 2021 70 095205Google Scholar

    Kong D L, Yang B Y, He F, Han R Y, Miao J S, Song T L, Ouyang J T 2021 Acta Phys. Sin. 70 095205Google Scholar

    [7]

    Wang R Y, Shen J Y, Ma Y P X, Qin X R, Qin X, Yang F, Ostrikov K, Zhang Q, He J, Zhong X X 2024 Plasma Process. Polym. 21 2300174Google Scholar

    [8]

    Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Ostrikov K 2021 J. Phys. D: Appl. Phys. 54 065201Google Scholar

    [9]

    Liu Z J, Wang S T, Pang B L, Gao Y T, Li Q S, Xu D H, Liu D X, Zhou R W 2022 Plasma Sources Sci. Technol. 31 05LT03Google Scholar

    [10]

    Guo L, Xu R B, Guo L, Liu Z C, Zhao Y M, Liu D X, Zhang L, Chen H L, Kong M G 2018 Appl. Environ. Microbiol. 84 e00726-18Google Scholar

    [11]

    Ran C F, Zhou X F, Wang Z Y, Liu K 2024 Plasma Sources Sci. Technol. 33 015009Google Scholar

    [12]

    Liu K, Geng W Q, Zhou X F, Duan Q S, Zheng Z F, Ostrikov K 2023 Plasma Sources Sci. Technol. 32 025005Google Scholar

    [13]

    Liu K, Zuo J, Ran C F, Yang M H, Geng W Q, Liu S T, Ostrikov K 2022 Phys. Chem. Chem. Phys. 24 8940Google Scholar

    [14]

    Xu H M, Gao J G, Jia P Y, Ran J X, Chen J Y, Li J M 2024 Chin. Phys. B 33 015205Google Scholar

    [15]

    陈忠琪, 钟安, 戴栋, 宁文军 2022 71 165201Google Scholar

    Chen Z Q, Zhong A, Dai D, Ning W J 2022 Acta Phys. Sin. 71 165201Google Scholar

    [16]

    Huang B D, Zhang C, Zhu W C, Lu X P, Shao T 2021 High Volt. 6 665Google Scholar

    [17]

    Wang B H, Chen L, Liu G M, Song P, Cheng F C, Sun D L. Zeng W, Xu L 2023 Phys. Scr. 98 045612Google Scholar

    [18]

    Chen M, Dong X P, Wu K Y, Ran J X, Jia P Y, Wu J C, Li X C 2024 Appl. Phys. Lett. 124 214102Google Scholar

    [19]

    Wu K Y, Liu J N, Wu J C, Chen M, Ran J X, Pang X X, Jia P Y, Li X C, Ren C H 2023 High Volt. 8 1161Google Scholar

    [20]

    张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰 2024 73 085201Google Scholar

    Zheng X X, Jia P Y, Ran J X, Li J M, Sun H X, Li X C 2024 Acta Phys. Sin. 73 085201Google Scholar

    [21]

    田富超, 陈雷, 裴欢, 白洁琪, 曾文 2023 光谱学与光谱分析 43 3682Google Scholar

    Tian F C, Chen L, Pei H, Bai J Q, Zeng W 2023 Spectros. Spect. Anal. 43 3682Google Scholar

    [22]

    Jurov A, Skoro N, Spasic K, Modic M, Hojnik N, Vojosevic D, Durovic M, Petrovic Z L, Cvelbar U 2022 Eur. Phys. J. D 76 29Google Scholar

    [23]

    Bousba H E, Sahli S, Namous W S E, Benterrouche L 2022 IEEE Trans. Plasma Sci. 50 1218Google Scholar

    [24]

    Zhou X F, Yang M H, Xiang H F, Geng W Q, Liu K 2023 Phys. Chem. Chem. Phys. 25 27427Google Scholar

    [25]

    刘坤, 杨明昊, 周雄峰, 白杨, 冉从福 2023 高等学校化学学报 44 20230327Google Scholar

    Liu K, Yang M H, Zhou X F, Bai Y, Ran C F 2023 Chem. J. Chin. Universities 44 20230327Google Scholar

    [26]

    Jiang W M, Tang J, Wang Y S, Zhao W, Duan Y X 2014 Appl. Phys. Lett. 104 013505Google Scholar

    [27]

    Liu C T, Kumakura T, Ishikawa K, Hashizume H, Takeda K, Ito M, Hori M, Wu J S 2016 Plasma Sources Sci. Technol. 25 065005Google Scholar

    [28]

    Xu H, Guo S S, Zhang H, Liu D X, Xie K 2021 Phys. Plasmas 28 123521Google Scholar

    [29]

    Sah A K, Al-Amin M, Talukder M R 2023 Environ. Sci. Pollut. Res. 30 74877Google Scholar

    [30]

    Guo H F, Xu Y F, Wang Y Y, Ren C S 2020 Phys. Plasmas 27 023519Google Scholar

    [31]

    Wang M Y, Han R Y, Zhang C Y, Ouyang J T 2020 IEEE International Conference on High Voltage Engineering and Application Beijing, China, September 6–10, 2020 pp1–4

    [32]

    Liu K, Xia H T, Yang M H, Geng W Q, Zuo J, Ostrikov K 2022 Vacuum 198 110901Google Scholar

    [33]

    刘坤, 左杰, 周雄峰, 冉从福, 杨明昊, 耿文强 2023 72 055201Google Scholar

    Liu K, Zuo J, Zhou X F, Ran C F, Yang M H, Geng W Q 2023 Acta Phys. Sin. 72 055201Google Scholar

    [34]

    Yuan H, Wang W C, Yang D Z, Zhao Z L, Zhang L, Wang S 2017 Plasma Sci. Technol. 19 125401Google Scholar

    [35]

    刘坤, 项红甫, 周雄峰, 夏昊天, 李华 2023 72 115201Google Scholar

    Liu K, Xiang H F, Zhou X F, Xia H T, Li H 2023 Acta Phys. Sin. 72 115201Google Scholar

    [36]

    Chen X, Wang X Q, Zhang B X, Yuan M, Yang S Z 2023 Chin. Phys. B 32 115201Google Scholar

    [37]

    Yang D Z, Zhou X F, Liang J P, Xu Q N, Wang H L, Yang K, Wang B, Wang W C 2021 J. Phys. D: Appl. Phys. 54 244002Google Scholar

    [38]

    Ran C F, Zhou X F, Liu K 2024 Phys. Chem. Chem. Phys. 26 18408Google Scholar

    [39]

    Dang V S M M, Foucher E, Rousseau A 2015 J. Phys. D: Appl. Phys. 48 424003Google Scholar

    [40]

    Zhou X F, Xiang H F, Yang M H, Geng W Q, Liu K 2023 J. Phys. D: Appl. Phys. 56 455202Google Scholar

    [41]

    Chen J Y, Zhao N, Wu J C, Wu K Y, Zhang F R, Ran J X, Jia P Y, Pang X X, Li X C 2022 Chin. Phys. B 31 065205Google Scholar

    [42]

    Gudmundsson J T, Thorstinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [43]

    Sakiyama Y, Graves D B, Chang H W, Shimuzu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [44]

    Tian W, Tachibana K, Kushner M J 2014 J. Phys. D: Appl. Phys. 47 055202Google Scholar

    [45]

    Jiang N, Sun Y, Peng B F, Li J, Shang K F, Lu N, Wu Y 2022 Plasma Process. Polym. 19 e2100108Google Scholar

    [46]

    胡杨, 罗婧怡, 蔡雨烟, 卢新培 2023 72 130501Google Scholar

    Hu Y, Luo J Y, Cai Y Y, Lu X P 2023 Acta Phys. Sin. 72 130501Google Scholar

    [47]

    Singh K S, Sharma A K 2021 J. Appl. Phys. 130 043302Google Scholar

    [48]

    Jeroen J, van de Sande M, Sola A, Gamero A, Rodero A, van der Mullen J 2003 Plasma Sources Sci. Technol. 12 464Google Scholar

  • 图 1  (a) APPJ实验装置; (b) 磁场系统

    Figure 1.  (a) Experimental setup of APPJ; (b) magnetic field system.

    图 2  (a)发射光谱图; (b)计算电子密度示意图; (c)计算电子激发温度示意图; (d)计算气体温度示意图

    Figure 2.  (a) Diagram for optical emission spectrum; (b) diagram for electron density calculation; (c) diagram for electron excitation temperature calculation; (d) diagram for gas temperature calculation.

    图 3  (a) APPJ放电形貌; (b) 等离子体羽长度随放电条件的变化

    Figure 3.  (a) APPJ discharge morphology; (b) variation of plume length with discharge conditions.

    图 4  放电功率随放电条件的变化

    Figure 4.  Variation of power with discharge conditions.

    图 5  (a)气体温度和(b)电子激发温度随放电条件的变化

    Figure 5.  Variation of (a) gas temperature and (b) electron excitation temperature with discharge conditions.

    图 6  电子密度随放电条件的变化

    Figure 6.  Variation of electron number density with discharge conditions.

    图 7  (a)激发态Ar*光谱强度和(b)基态·OH粒子数密度随放电条件的变化

    Figure 7.  Variation of (a) excited Ar* spectral intensity and (b) ·OH number density with discharge conditions.

    Baidu
  • [1]

    Ma L, Chen Y, Gong Q, Cheng Z, Ran C F, Liu K, Shi C M 2023 Free Rad. Biol. Medic. 204 184Google Scholar

    [2]

    Wang X L, Liu J, Li Q X, Li L, Li S R, Ding Y H, Zhao T, Sun Y, Zhang Y T 2023 High Volt. 8 841Google Scholar

    [3]

    Xi D K, Zhang X H, Yang S Z, Yap S S, Ishikawa K, Hori M, Yap S L 2022 Chin. Phys. B 31 128201Google Scholar

    [4]

    Kong X H, Xue S, Li H Y, Yang W M, Martynovich E F, Ning W J, Wang R X 2022 Plasma Sources Sci. Technol. 31 095010Google Scholar

    [5]

    Cui X L, Xu Z B, Zhou Y Y, Zhu X, Wang S, Fang Z 2022 Surf. Coat. Technol. 451 129066Google Scholar

    [6]

    孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭 2021 70 095205Google Scholar

    Kong D L, Yang B Y, He F, Han R Y, Miao J S, Song T L, Ouyang J T 2021 Acta Phys. Sin. 70 095205Google Scholar

    [7]

    Wang R Y, Shen J Y, Ma Y P X, Qin X R, Qin X, Yang F, Ostrikov K, Zhang Q, He J, Zhong X X 2024 Plasma Process. Polym. 21 2300174Google Scholar

    [8]

    Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Ostrikov K 2021 J. Phys. D: Appl. Phys. 54 065201Google Scholar

    [9]

    Liu Z J, Wang S T, Pang B L, Gao Y T, Li Q S, Xu D H, Liu D X, Zhou R W 2022 Plasma Sources Sci. Technol. 31 05LT03Google Scholar

    [10]

    Guo L, Xu R B, Guo L, Liu Z C, Zhao Y M, Liu D X, Zhang L, Chen H L, Kong M G 2018 Appl. Environ. Microbiol. 84 e00726-18Google Scholar

    [11]

    Ran C F, Zhou X F, Wang Z Y, Liu K 2024 Plasma Sources Sci. Technol. 33 015009Google Scholar

    [12]

    Liu K, Geng W Q, Zhou X F, Duan Q S, Zheng Z F, Ostrikov K 2023 Plasma Sources Sci. Technol. 32 025005Google Scholar

    [13]

    Liu K, Zuo J, Ran C F, Yang M H, Geng W Q, Liu S T, Ostrikov K 2022 Phys. Chem. Chem. Phys. 24 8940Google Scholar

    [14]

    Xu H M, Gao J G, Jia P Y, Ran J X, Chen J Y, Li J M 2024 Chin. Phys. B 33 015205Google Scholar

    [15]

    陈忠琪, 钟安, 戴栋, 宁文军 2022 71 165201Google Scholar

    Chen Z Q, Zhong A, Dai D, Ning W J 2022 Acta Phys. Sin. 71 165201Google Scholar

    [16]

    Huang B D, Zhang C, Zhu W C, Lu X P, Shao T 2021 High Volt. 6 665Google Scholar

    [17]

    Wang B H, Chen L, Liu G M, Song P, Cheng F C, Sun D L. Zeng W, Xu L 2023 Phys. Scr. 98 045612Google Scholar

    [18]

    Chen M, Dong X P, Wu K Y, Ran J X, Jia P Y, Wu J C, Li X C 2024 Appl. Phys. Lett. 124 214102Google Scholar

    [19]

    Wu K Y, Liu J N, Wu J C, Chen M, Ran J X, Pang X X, Jia P Y, Li X C, Ren C H 2023 High Volt. 8 1161Google Scholar

    [20]

    张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰 2024 73 085201Google Scholar

    Zheng X X, Jia P Y, Ran J X, Li J M, Sun H X, Li X C 2024 Acta Phys. Sin. 73 085201Google Scholar

    [21]

    田富超, 陈雷, 裴欢, 白洁琪, 曾文 2023 光谱学与光谱分析 43 3682Google Scholar

    Tian F C, Chen L, Pei H, Bai J Q, Zeng W 2023 Spectros. Spect. Anal. 43 3682Google Scholar

    [22]

    Jurov A, Skoro N, Spasic K, Modic M, Hojnik N, Vojosevic D, Durovic M, Petrovic Z L, Cvelbar U 2022 Eur. Phys. J. D 76 29Google Scholar

    [23]

    Bousba H E, Sahli S, Namous W S E, Benterrouche L 2022 IEEE Trans. Plasma Sci. 50 1218Google Scholar

    [24]

    Zhou X F, Yang M H, Xiang H F, Geng W Q, Liu K 2023 Phys. Chem. Chem. Phys. 25 27427Google Scholar

    [25]

    刘坤, 杨明昊, 周雄峰, 白杨, 冉从福 2023 高等学校化学学报 44 20230327Google Scholar

    Liu K, Yang M H, Zhou X F, Bai Y, Ran C F 2023 Chem. J. Chin. Universities 44 20230327Google Scholar

    [26]

    Jiang W M, Tang J, Wang Y S, Zhao W, Duan Y X 2014 Appl. Phys. Lett. 104 013505Google Scholar

    [27]

    Liu C T, Kumakura T, Ishikawa K, Hashizume H, Takeda K, Ito M, Hori M, Wu J S 2016 Plasma Sources Sci. Technol. 25 065005Google Scholar

    [28]

    Xu H, Guo S S, Zhang H, Liu D X, Xie K 2021 Phys. Plasmas 28 123521Google Scholar

    [29]

    Sah A K, Al-Amin M, Talukder M R 2023 Environ. Sci. Pollut. Res. 30 74877Google Scholar

    [30]

    Guo H F, Xu Y F, Wang Y Y, Ren C S 2020 Phys. Plasmas 27 023519Google Scholar

    [31]

    Wang M Y, Han R Y, Zhang C Y, Ouyang J T 2020 IEEE International Conference on High Voltage Engineering and Application Beijing, China, September 6–10, 2020 pp1–4

    [32]

    Liu K, Xia H T, Yang M H, Geng W Q, Zuo J, Ostrikov K 2022 Vacuum 198 110901Google Scholar

    [33]

    刘坤, 左杰, 周雄峰, 冉从福, 杨明昊, 耿文强 2023 72 055201Google Scholar

    Liu K, Zuo J, Zhou X F, Ran C F, Yang M H, Geng W Q 2023 Acta Phys. Sin. 72 055201Google Scholar

    [34]

    Yuan H, Wang W C, Yang D Z, Zhao Z L, Zhang L, Wang S 2017 Plasma Sci. Technol. 19 125401Google Scholar

    [35]

    刘坤, 项红甫, 周雄峰, 夏昊天, 李华 2023 72 115201Google Scholar

    Liu K, Xiang H F, Zhou X F, Xia H T, Li H 2023 Acta Phys. Sin. 72 115201Google Scholar

    [36]

    Chen X, Wang X Q, Zhang B X, Yuan M, Yang S Z 2023 Chin. Phys. B 32 115201Google Scholar

    [37]

    Yang D Z, Zhou X F, Liang J P, Xu Q N, Wang H L, Yang K, Wang B, Wang W C 2021 J. Phys. D: Appl. Phys. 54 244002Google Scholar

    [38]

    Ran C F, Zhou X F, Liu K 2024 Phys. Chem. Chem. Phys. 26 18408Google Scholar

    [39]

    Dang V S M M, Foucher E, Rousseau A 2015 J. Phys. D: Appl. Phys. 48 424003Google Scholar

    [40]

    Zhou X F, Xiang H F, Yang M H, Geng W Q, Liu K 2023 J. Phys. D: Appl. Phys. 56 455202Google Scholar

    [41]

    Chen J Y, Zhao N, Wu J C, Wu K Y, Zhang F R, Ran J X, Jia P Y, Pang X X, Li X C 2022 Chin. Phys. B 31 065205Google Scholar

    [42]

    Gudmundsson J T, Thorstinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [43]

    Sakiyama Y, Graves D B, Chang H W, Shimuzu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [44]

    Tian W, Tachibana K, Kushner M J 2014 J. Phys. D: Appl. Phys. 47 055202Google Scholar

    [45]

    Jiang N, Sun Y, Peng B F, Li J, Shang K F, Lu N, Wu Y 2022 Plasma Process. Polym. 19 e2100108Google Scholar

    [46]

    胡杨, 罗婧怡, 蔡雨烟, 卢新培 2023 72 130501Google Scholar

    Hu Y, Luo J Y, Cai Y Y, Lu X P 2023 Acta Phys. Sin. 72 130501Google Scholar

    [47]

    Singh K S, Sharma A K 2021 J. Appl. Phys. 130 043302Google Scholar

    [48]

    Jeroen J, van de Sande M, Sola A, Gamero A, Rodero A, van der Mullen J 2003 Plasma Sources Sci. Technol. 12 464Google Scholar

  • [1] Li Chen-Pu, Wu Wei-Xia, Zhang Li-Gang, Hu Jin-Jiang, Xie Ge-Ying, Zheng Zhi-Gang. Separation of active chiral particles with different diffusion coefficients. Acta Physica Sinica, 2024, 73(20): 200201. doi: 10.7498/aps.73.20240686
    [2] Cui Sui-Han, Zuo Wei, Huang Jian, Li Xi-Teng, Chen Qiu-Hao, Guo Yu-Xiang, Yang Chao, Wu Zhong-Can, Ma Zheng-Yong, Fu Jin-Yu, Tian Xiu-Bo, Zhu Jian-Hao, Wu Zhong-Zhen. High-efficient particle-in-cell/Monte Carlo model for complex solution domain andsimulation of anode layer ion source. Acta Physica Sinica, 2023, 72(8): 085202. doi: 10.7498/aps.72.20222394
    [3] Liu Kun, Xiang Hong-Fu, Zhou Xiong-Feng, Xia Hao-Tian, Li Hua. Spectral diagnosis of atmospheric pressure AC argon plasma jet at constant power. Acta Physica Sinica, 2023, 72(11): 115201. doi: 10.7498/aps.72.20230307
    [4] Zhao Li-Fen, Ha Jing, Wang Fei-Fan, Li Qing, He Shou-Jie. Simulation of hollow cathode discharge in oxygen. Acta Physica Sinica, 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [5] Chen Zhong-Qi, Zhong An, Dai Dong, Ning Wen-Jun. Effect of flow rate of shielding gas on distribution of particles in coaxial double-tube helium atmospheric pressure plasma jet. Acta Physica Sinica, 2022, 71(16): 165201. doi: 10.7498/aps.71.20220421
    [6] Zhang Ya-Rong, Han Qian-Han, Guo Ying, Zhang Jing, Shi Jian-Jun. Discharge characteristics and mechanism of plasma plume generated by atmospheric pulsed discharge. Acta Physica Sinica, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [7] Kong De-Lin, Yang Bing-Yan, He Feng, Han Ruo-Yu, Miao Jin-Song, Song Ting-Lu, Ouyang Ji-Ting. Deposition of titanium oxide films by atmospheric pressure corona discharge plasma jet. Acta Physica Sinica, 2021, 70(9): 095205. doi: 10.7498/aps.70.20202181
    [8] Liao Jing-Jing, Lin Fu-Jun. Diffusion and separation of binary mixtures of chiral active particles driven by time-delayed feedback. Acta Physica Sinica, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [9] Guo Heng, Zhang Xiao-Ning, Nie Qiu-Yue, Li He-Ping, Zeng Shi, Li Zhi-Hui. Numerical modelling for characteristics of the meso-pressure six-phase alternative current arc discharge plasma jet. Acta Physica Sinica, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [10] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [11] Wang Lu-Shun, Jiang Hui, Kong Xiang-Mu. Thermal entanglement of mixed spin XY systems. Acta Physica Sinica, 2012, 61(24): 240304. doi: 10.7498/aps.61.240304
    [12] Cai Li-Bing, Wang Jian-Guo, Zhu Xiang-Qin, Wang Yue, Xuan Chun, Xia Hong-Fu. Effects of an external magnetic field on multipactor on a dielectric surface. Acta Physica Sinica, 2012, 61(7): 075101. doi: 10.7498/aps.61.075101
    [13] Hu Ming, Wan Shu-De, Zhong Lei, Liu Hao, Wang Hai. Magnetic control of the constant-current glow discharge plasma characteristics. Acta Physica Sinica, 2012, 61(4): 045201. doi: 10.7498/aps.61.045201
    [14] Liu Li-Ying, Zhang Jia-Liang, Guo Qing-Chao, Wang De-Zhen. Diagnostics of the atmospheric pressure plasma jets for plasma enhanced chemical vapor deposition of polycrystalline silicon thin film. Acta Physica Sinica, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [15] Jiang Nan, Cao Ze-Xian. Experimental studies on an atmospheric pressure He plasma jet. Acta Physica Sinica, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [16] Zhang Lei, Ren Min, Hu Jiu-Ning, Deng Ning, Chen Pei-Yi. The control of the crucial current in current-induced magnetization switching with an external magnetic field. Acta Physica Sinica, 2008, 57(4): 2427-2431. doi: 10.7498/aps.57.2427
    [17] Guo Yu-Xian, Wang Jie, Li Hong-Hong, Xu Peng-Shou, Wang Feng, Yan Wen-Sheng. The variation of X-ray absorption spectra intensity caused by external magnetic field in drain current mode. Acta Physica Sinica, 2007, 56(1): 561-568. doi: 10.7498/aps.56.561
    [18] Yan Jian-Hua, Tu Xin, Ma Zeng-Yi, Pan Xin-Chao, Cen Ke-Fa, Cheron Bruno. Characterization of DC argon plasma jet at atmospheric pressure. Acta Physica Sinica, 2006, 55(7): 3451-3457. doi: 10.7498/aps.55.3451
    [19] Sun Chun-Feng. The partition function and correlation functions of the Ising model on a diamond fractal lattices. Acta Physica Sinica, 2005, 54(8): 3768-3773. doi: 10.7498/aps.54.3768
    [20] Yang Juan, Zhu Liang-Ming, Su Wei-Yi, Mao Gen-Wang. Calculation of the wave reflecting characteristics of magnetized plasma surface. Acta Physica Sinica, 2005, 54(7): 3236-3240. doi: 10.7498/aps.54.3236
  • supplement 22-20241166Suppl.pdf supplement
Metrics
  • Abstract views:  585
  • PDF Downloads:  39
  • Cited By: 0
Publishing process
  • Received Date:  23 August 2024
  • Accepted Date:  11 September 2024
  • Available Online:  08 October 2024
  • Published Online:  20 November 2024

/

返回文章
返回
Baidu
map