搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光谱诊断中神经网络快速分析模型及外推方法

田文静 杨宗谕 许敏 龙婷 何小雪 柯锐 杨硕苏 余德良 石中兵 高喆

引用本文:
Citation:

光谱诊断中神经网络快速分析模型及外推方法

田文静, 杨宗谕, 许敏, 龙婷, 何小雪, 柯锐, 杨硕苏, 余德良, 石中兵, 高喆

Rapid analysis model and extrapolation method of neural network in spectral diagnostic

TIAN Wenjing, YANG Zongyu, XU Min, LONG Ting, HE Xiaoxue, KE Rui, YANG Shuosu, YU Deliang, SHI Zhongbing, GAO Zhe
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 对于旨在实现高参数和长脉冲运行的磁约束聚变装置而言, 基于离子温度实时测量的等离子体反馈控制至关重要, 而电荷交换复合光谱是等离子体离子温度的基本测量手段. 本文提出了一种基于神经网络的电荷交换复合光谱诊断数据快速分析方法, 并对其跨参数区间的外推能力进行研究. 该研究使用中国环流器二号A装置HL-2A的12.2×104个光谱数据及离线解谱获得的离子温度标签值构成数据集. 模型基于卷积神经网络, 相对于标签值实现了拟合优度$ {R}^{2}{\mathrm{约}}0.92 $的效果, 在推理阶段单光谱耗时小于1 ms, 相比传统方法加速了100—1000倍. 在外推能力方面, 提出基于低温度实验数据生成高温度的合成光谱数据的方法, 并通过在只包含离子温度2 keV以下的训练集中添加大约5%的合成数据, 大幅增加了模型在外推参数区间(2—4 keV)分析的准确性, 并将模型在3—4 keV区间测试的误差降低了约60%. 该研究证明了在磁约束核聚变领域利用合成数据提升人工智能算法性能的可行性.
    Real-time measurement and feedback control of key plasma parameters are critical for future fusion reactor operation, with ion temperature being a vital control target as part of the triple product for fusion ignition. However, plasma diagnostics often require complex data analysis. A widely used method of obtaining ion temperature $ {T}_{{\mathrm{i}}} $ from charge exchange recombination spectrum (CXRS) is iterative spectral fitting, which is time-consuming and requires expert intervention during data analysis. On top of that, frequent human expert intervention is required in traditional iterative fitting. Therefore, the traditional method cannot meet the demand for real-time $ {T}_{{\mathrm{i}}} $ measurement. Neural network (NN), which can learn the underlying relationships between the measured spectra and $ {T}_{{\mathrm{i}}} $, is a promising approach to cope with this problem. In fact, NN approach has been widely adopted in the field of magnetically confined plasma. Previous study in JET has achieved a satisfactory accuracy for inferring $ {T}_{{\mathrm{i}}} $ from CXRS spectra compared with the traditional fitting results. Recently, the study of disruption prediction has achieved great progress with the help of deep NNs. However, these researches are conducted on steadily-operating devices; for NN models, the data distribution of training set is similar to that of test set. This is not the case for newly-built tokamak like HL-3 nor for future fusion reactors such as ITER. For new devices, there will be a period for the plasma parameters to rise from low to high ranges. In this case, it is crucial to investigate the ability of NN model to extrapolate based on low parameter training data.A traditional neural network (TNN)-based model is proposed to accelerate the analysis of spectral data of CXRS, with a focus on investigating the ability of the model to extrapolate to much higher $ {T}_{{\mathrm{i}}} $ range. The dataset contains about 122000 spectral data, as well as their corresponding $ {T}_{{\mathrm{i}}} $ inferred from offline iterative process. The results demonstrate that the TNN-based model achieves excellent analysis of $ {T}_{{\mathrm{i}}} $ as indicated by a coefficient of determination (R²) of 0.92, and reduces the inference time for analyzing a single spectrum to less than 1 ms, reaching 100–1000 times faster than traditional spectral fitting methods. However, the performance of the data-driven neural network model is limited by challenges such as insufficient data and imbalanced data distribution, which further deteriorates the ability to extrapolate. Generally, data with higher $ {T}_{{\mathrm{i}}} $ account for a small portion of the total dataset. In our study, only about 5% of the spectra correspond to $ {T}_{{\mathrm{i}}} > 2{\mathrm{ }}\;{\mathrm{k}}{\mathrm{e}}{\mathrm{V}} $ (ranging from 2 to 4 keV). However, they reflect the temperature of central plasma, which is more important for assessing the performance of plasma. To overcome this limitation, this study synthesizes high-temperature data based on experimental data from discharges with $ {T}_{{\mathrm{i}}} $ in low-temperature range. By incorporating 5% synthetic data into the training set only consisting of data with $ {T}_{{\mathrm{i}}} < 2\;{\mathrm{ }}{\mathrm{k}}{\mathrm{e}}{\mathrm{V}} $, the ability of model to extrapolate is extended to the whole range of $ {T}_{{\mathrm{i}}} < 4\;{\mathrm{k}}{\mathrm{e}}{\mathrm{V}} $. The average relative error (ARE) of the model within the training data in the range of $ {3\;{\mathrm{ }}{\mathrm{k}}{\mathrm{e}}{\mathrm{V}} < T}_{{\mathrm{i}}} < 4\;{\mathrm{k}}{\mathrm{e}}{\mathrm{V}} $ decreases from 35% to below 15%, corresponding to a reduction of approximately 60% relative to the ARE before adding synthetic data. This approach demonstrates the feasibility of using synthetic data to enhance the performance of artificial intelligence algorithms in the field of magnetic confinement fusion. These findings provide valuable ideas for developing the real-time ion temperature measurement and feedback control of future high-parameter fusion devices. Furthermore, the study lays a foundation for investigating high-performance across-device characteristic, such as machine learning-based disruption prediction and tearing mode control.
  • 图 1  HL-2A装置CXRS光谱诊断示例 (a) CXRS诊断系统示意图; (b)离子温度为3.1和1.4 keV下光谱及其分解结果

    Fig. 1.  The CXRS diagnostic system and measured spectra in HL-2A: (a) Diagram of CXRS diagnostic system; (b) spectra and their decomposition results at ion temperature of 3.1 and 1.4 keV.

    图 2  数据集的离子温度分布

    Fig. 2.  Distribution of ion temperature in the whole dataset.

    图 3  神经网络模型结构, 其中实线箭头连接的地方表示残差连接

    Fig. 3.  The architecture of the CNN-based model, where the solid arrow is connected, the residual connection is represented.

    图 4  神经网络模型的标签与预测值散点图, 图中黑色虚线为横坐标与纵坐标值相等的线

    Fig. 4.  The scatter plot of label and output of the CNN-based model, the black dotted line in the figure is the line where the horizontal coordinate and the vertical coordinate are equal.

    图 5  神经网络模型的标签与预测结果对比 (a)标签与预测离子温度不同时刻剖面对比; (b)标签与预测离子温度不同位置时间演化对比

    Fig. 5.  The label against the output ion temperature of the CNN-based model: (a) Ti profiles in different time; (b) time evolution of Ti at different radius.

    图 6  光谱曲线及对应的IG曲线(炮号34339, 810 ms). 神经网络对输入的IG曲线呈现近似“M”型, 且与高斯峰的位置准确吻合, 呈现出检测高斯峰的行为

    Fig. 6.  The spectrum and IG graph of the spectrum in 810 ms of shot No. 34339. The neural network presents an approximate “M” shape to the input IG curve, and it is exactly consistent with the position of the Gaussian peak, showing the behavior of detecting the Gaussian peak

    图 7  Ti在0—2 keV参数区间训练的神经网络模型外推到更高温度参数区间的表现

    Fig. 7.  The performance of the CNN-based model trained on dataset with Ti in 0–2 keV on test set in higher Ti range.

    图 8  合成谱线的流程图及谱线示例.

    Fig. 8.  Examples of synthetic spectrum, along with the flow chart of the synthesizing process.

    图 9  $ {T}_{{\mathrm{i}}} $在0—2 keV区间训练的神经网络模型外推到更高温度参数区间的表现

    Fig. 9.  Performance of the CNN-based model trained on dataset with $ {T}_{{\mathrm{i}}} $ between 0–2 keV on data with higher $ {T}_{{\mathrm{i}}} $.

    图 10  训练集有、无合成训练数据的神经网络模型在不同离子温度区间的平均相对误差MRE表现对比

    Fig. 10.  Comparison of the MRE in various $ {T}_{{\mathrm{i}}} $ ranges of CNN-based models w/ or w/o synthetic training data.

    表 1  CNN层的参数配置

    Table 1.  Configuration of the CNN layers.

    编号核数量核宽度激活函数池化池化步长池化宽度
    1323gelu[23]
    2323最大22
    3323
    4323
    5643最大22
    6643
    7643
    81285最大22
    91283
    101283
    111283最大全局
    下载: 导出CSV

    表 2  模型训练过程的超参数配置及相关说明

    Table 2.  Hyper-parameters of the CNN-based model.

    参数(英文名)说明
    高斯噪声(Gaussian noise)μ = 0, σ = 0.01添加高斯噪声对训练集进行数据增强
    批次尺寸(Batch size)128随机梯度下降过程中的批次数据个数
    早停机制(Early stopping)20经过一定轮次的训练若效果不再提升则视为训练完成
    神经元屏蔽(Dropout)0.2全连接层中神经元输出在训练过程中随机置零的比例, 以减少过拟合
    下载: 导出CSV

    表 3  模型的拟合效果及速度评估

    Table 3.  Performance of the model.

    训练集 测试集/keV $ {R}^{2} $ MRE 推理耗时/
    (ms·单光谱–1)
    无合成数据 0—2 0.92 14% 0.59
    (平均值)
    0.67
    (99%)
    无合成数据 0—4 0.86 15%
    有合成数据 0—4 0.93 13%
    下载: 导出CSV
    Baidu
  • [1]

    Lister J B, Bruzzone P L, Costley A E, Fukuda T, Yu G, Mertens V, Moreau D, Oikawa T, Pitts R A, Portone A, Vayakis G, Wesley J, Yoshino R 2000 Nucl. Fusion 40 1167Google Scholar

    [2]

    Gormezano C, Sips A C C, Luce T C, Ide S, Becoulet A, Litaudon X, Isayama A, Hobirk J, Wade M R, Oikawa T, Prater R, Zvonkov A, Lloyd B, Suzuki T, Barbato E, Bonoli P, Phillips C K, Vdovin V, Joffrin E, Casper T, Ferron J, Mazon D, Moreau D, Bundy R, Kessel C, Fukuyama A, Hayashi N, Imbeaux F, Murakami M, Polevoi A R, St John H E 2007 Nucl. Fusion 47 S285Google Scholar

    [3]

    Hellermann M G V, Mandl W, Summers H P, Weisen H, Wolf R 1990 Rev. Sci. Instrum. 61 3479Google Scholar

    [4]

    Seraydarian R P, Burrell K H 1986 Rev. Sci. Instrum. 57 2012Google Scholar

    [5]

    何小雪, 陈文锦, 魏彦玲, 刘亮, 王诗琴, 余德良 2024 核聚变与等离子体物理 44 477

    He X X, Chen W J, Wei Y L, Liu L, Wang S Q, Yu D L 2024 Nucl. Fusion Plasma Phys. 44 477

    [6]

    张镱 2015 硕士学位论文(合肥: 中国科学技术大学)

    Zhang Y 2015 M. S. Thesis (Hefei: University of Science and Technology of China

    [7]

    Svensson J, Hellermann M V, König R W T 1999 Plasma Phys. Controlled Fusion 41 315Google Scholar

    [8]

    Bishop C M, Roach C M 1992 Rev. Sci. Instrum. 63 4450Google Scholar

    [9]

    Abbate J, Conlin R, Kolemen E 2021 Nucl. Fusion 61 046027Google Scholar

    [10]

    Zheng G H, Yang Z Y, Liu S F, Ma R, Gong X W, Wang A, Wang S, Zhong W L 2024 Nucl. Fusion 64 126041Google Scholar

    [11]

    Yang Z, Xia F, Song X, Gao Z, Wang S, Dong Y 2021 Nucl. Fusion 61 126042Google Scholar

    [12]

    Yang Z, Xia F, Song X, Gao Z, Li Y, Gong X, Dong Y, Zhang Y, Chen C, Luo C, Li B, Zhu X, Ji X, Li Y, Liu L, Gao J, Liu Y 2022 Fusion Eng. Des. 182 113223Google Scholar

    [13]

    Seo J, Kim S, Jalalvand A, Conlin R, Rothstein A, Abbate J, Erickson K, Wai J, Shousha R, Kolemen E 2024 Nature 626 8000

    [14]

    Duan X R, Xu M, Zhong W L, et al. 2024 Nucl. Fusion 64 112021Google Scholar

    [15]

    Duan X R, Xu M, Zhong W L, et al. 2022 Nucl. Fusion 62 042020Google Scholar

    [16]

    Donné A J H, Costley A E, Barnsley R, et al. 2007 Nucl. Fusion 47 S337Google Scholar

    [17]

    Wei Y L, Yu D L, Liu L, Ida K, von Hellermann M, Cao J Y, Sun A P, Ma Q, Chen W J, Liu Y, Yan L W, Yang Q W, Duan X R, Liu Y 2014 Rev. Sci. Instrum. 85 103503Google Scholar

    [18]

    He X X, Yu D L, Yan L W, Liu L, Chen W J, Wei Y L, He X F, Ma Q, Shi Z B, Liu Y, Yang Q W, Xu M, Duan X R 2020 Rev. Sci. Instrum. 91 053504Google Scholar

    [19]

    王彦飞, 朱悉铭, 张明志, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜 2021 70 095211Google Scholar

    Wang Y F, Zhu X M, Zhang M Z, Meng S F, Chai H, Wang Y, Ning Z X 2021 Acta Phys. Sin. 70 095211Google Scholar

    [20]

    Fei N Y, Gao Y Z, Lu Z W, Xiang T 2021 2021 IEEE/CVF International Conference on Computer Vision Electric Network, October 11—17, 2021 pp142—151

    [21]

    He K M, Zhang X Y, Ren S Q, Sun J 2015 arXiv: 1512.03385 [cs. CV]

    [22]

    He M, Yang Z, Liu S, Xia F, Zhong W 2024 Plasma Phys. Controlled Fusion 66 105019Google Scholar

    [23]

    Hendrycks D, Gimpel K 2016 arXiv: 1606.08415 [cs. LG]

    [24]

    Loshchilov I, Hutter F 2017 arXiv: 1711.05101 [cs. LG]

    [25]

    Yushmanov P N, Takizuka T, Riedel K S, Kardaun O J W F, Cordey J G, Kaye S M, Post D E 1990 Nucl. Fusion 30 1999Google Scholar

    [26]

    Sundararajan M, Taly A, Yan Q 2017 arXiv: 1703.01365 [cs. LG]

  • [1] 刘坤, 项红甫, 周雄峰, 夏昊天, 李华. 固定功率下大气压交流氩气等离子体射流的光谱特性.  , doi: 10.7498/aps.72.20230307
    [2] 方波浪, 王建国, 冯国斌. 基于物理信息神经网络的光斑质心计算.  , doi: 10.7498/aps.71.20220670
    [3] 刘国荣, 朱维君, 褚润通, 王伟, 袁萍, 安婷婷, 万瑞斌, 孙对兄, 马云云, 郭志艳. 依据不同波段光谱诊断闪电回击通道温度.  , doi: 10.7498/aps.71.20211673
    [4] 魏德志, 陈福集, 郑小雪. 基于混沌理论和改进径向基函数神经网络的网络舆情预测方法.  , doi: 10.7498/aps.64.110503
    [5] 刘玉峰, 张连水, 和万霖, 黄宇, 杜艳君, 蓝丽娟, 丁艳军, 彭志敏. 激光诱导击穿火焰等离子体光谱研究.  , doi: 10.7498/aps.64.045202
    [6] 梁亦寒, 胡广月, 袁鹏, 王雨林, 赵斌, 宋法伦, 陆全明, 郑坚. 纳秒激光烧蚀固体靶产生的等离子体在外加横向磁场中膨胀时的温度和密度参数演化.  , doi: 10.7498/aps.64.125204
    [7] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究.  , doi: 10.7498/aps.63.205205
    [8] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X辐射谱线的分离及电子温度的提取.  , doi: 10.7498/aps.63.095201
    [9] 陈铁明, 蒋融融. 混沌映射和神经网络互扰的新型复合流密码.  , doi: 10.7498/aps.62.040301
    [10] 李华青, 廖晓峰, 黄宏宇. 基于神经网络和滑模控制的不确定混沌系统同步.  , doi: 10.7498/aps.60.020512
    [11] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究.  , doi: 10.7498/aps.60.025203
    [12] 蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤. 辐射输运实验中的Al等离子体发射光谱研究.  , doi: 10.7498/aps.60.045210
    [13] 赵海全, 张家树. 混沌通信系统中非线性信道的自适应组合神经网络均衡.  , doi: 10.7498/aps.57.3996
    [14] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究.  , doi: 10.7498/aps.57.6120
    [15] 王瑞敏, 赵 鸿. 神经元传输函数对人工神经网络动力学特性的影响.  , doi: 10.7498/aps.56.730
    [16] 王耀南, 谭 文. 混沌系统的遗传神经网络控制.  , doi: 10.7498/aps.52.2723
    [17] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制.  , doi: 10.7498/aps.51.2463
    [18] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较.  , doi: 10.7498/aps.51.1326
    [19] 董贾福, 唐年益, 李伟, 罗俊林, 郭干诚, 钟云泽, 刘仪, 傅炳忠, 姚良骅, 冯北滨, 秦运文. HL-1M装置超声分子束注入等离子体穿透特性的诊断.  , doi: 10.7498/aps.51.2074
    [20] 神经网络的自适应删剪学习算法及其应用.  , doi: 10.7498/aps.50.674
计量
  • 文章访问数:  267
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-18
  • 修回日期:  2025-01-18
  • 上网日期:  2025-02-17

/

返回文章
返回
Baidu
map