搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压等离子体炬电子密度的光谱诊断

董丽芳 刘为远 杨玉杰 王帅 嵇亚飞

引用本文:
Citation:

大气压等离子体炬电子密度的光谱诊断

董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞

Spectral diagnostics of electron density of plasma torch at atmospheric pressure

Dong Li-Fang, Liu Wei-Yuan, Yang Yu-Jie, Wang Shuai, Ji Ya-Fei
PDF
导出引用
  • 利用空心针-板放电装置产生了大气压等离子体炬,采用光谱法测量了其内部及表面的电子密度. 向空心针中通入氩气,在大气环境中产生了长度为1cm的等离子体炬.实验分别测量了Hα谱线和ArⅠ(696.54nm)谱线,通过反卷积方法分离出其相应的Stark展宽,并由此计算了电子密度.结果发现,采用Hα谱线和ArⅠ(696.54nm)谱线Stark展宽计算得到的等离子体的电子密度分别为1.0×1015cm-3和3.78×1015
    An atmospheric pressure plasma torch is generated with a hollowneedle-to-plate dielectric barrier discharge and the electron densities in the inside and at the surface of the plasma torch are measured by optical emission spectroscopy (OES). A plasma torch with 1cm long is generated in atmospheric ambient when argon gas is introduced through the hollwneedle. The Stark broadenings of Hα and ArⅠ(696.54 nm) lines, which are decomposed from the experimental profiles by using deconvolution method, are used to estimate the corresponding electron densities. The electron densities are 1.0×1015 cm-3 and 3.78×1015 cm-3 corresponding to the Stark broadening of Hα and ArⅠ(696.54 nm) lines, respectively. The electron density calculated from the Stark broadening of Hα is the same as that at the surface of the plasma because Hα line originates from the dissociation and the excitation of H\-2O at the plasma torch surface where argon can meet with atmosphere. While the electron density calculated from the Stark broadening of ArⅠ(696.54 nm)line is the same as that in the insid of plasma.
    • 基金项目: 国家自然科学基金(批准号:10975043,10775037),河北省自然科学基金(批准号:A2010000185)资助的课题.
    [1]

    NozakiT, UnnoY, MiyazakiY, OkazakiK 2001 J. Phys. D: Appl. Phys. 34 2504

    [2]

    Yang J, Xu Y Q, Zhu L M 2008 Acta Phys . Sin. 57 1788 (in Chinese) [杨 涓、许映乔、朱良明 2008 57 1788]

    [3]

    Fantz U, Wünderlich D 2006 New Journal of Physics 8 301

    [4]

    Wang Q, Doll F, Donnelly V, Economou D J, Sadeghi N, Franz G F 2007 J. Phys. D: Appl. Phys. 40 4202

    [5]

    Zhang H C, Lu J, Ni X W 2009 Acta Phys . Sin. 58 4034 (in Chinese) [张宏超、陆 建、倪晓武 2009 58 4034]

    [6]

    Zhang X H,Huang J, Liu X D,Peng L, Sun Y, Chen W, Feng K C, Yang S Z 2009 Acta Phys . Sin. 58 1595 (in Chinese) [张先徽、黄 骏、刘筱娣、彭 磊、孙 岳、陈 维、冯克成、杨思泽 2009 58 1595]

    [7]

    Zhang Y,Gu B,Wang W C,Peng X W,Wang D Z 2009 Acta Phys . Sin. 58 5532 (in Chinese) [张 燕、顾 彪、王文春、彭许文、王德真 2009 58 5532]

    [8]

    Wang C,Fang Z H,Sun J R, Wang W,Xiong J 2008 Acta Phys. Sin. 57 7770 (in Chinese) [王 琛、方智恒、孙今人、王 伟、熊 俊 2008 57 7770]

    [9]

    Ding Z F, Sun J Z, Wang D Z, Wu J, Zhang J, Zhang P Y 2008 Chin. Phys. B 17 1848

    [10]

    Moisan M, Ferreira C M, Hajlaoui Y, Henry D, Hubert J, Pantel R, Ricard A, Zakrazewski Z 1982 Revue Phys. Appl. 17 707

    [11]

    Kunze K, Miclea M, Musa G, Franzke J, Vadla C, Niemax K, 2002 Spectrochimica Acta B 57137

    [12]

    Abdellatif G, Imam H. 2002 Spectrochimica Acta B:Atomic Spectroscopy 57 1155

    [13]

    Griem H R 1964 Plasma spectroscopy (New York:McGraw-Hill) p492

    [14]

    Wujec T, Olchawa W, Halenka J, Musielok J 2002 Phys. Rev. E 6 066403

    [15]

    Guo Q C, Liu L Y, Wang D Z, Zhang J L 2010 Chin. Phys. B 19 2653

    [16]

    Konjevic ' N 2001 Plasma Sources Sci. Technol.10 356

    [17]

    Pellerin S, Musiol K, Pokrzywka B, Chapelle J 1996 J. Phys. B:At.Mol.Opt.Phys. 29 3911

    [18]

    Ying M J, Xia Y Y, Sun Y M, Lu Q M, Zhao M W, Liu X D 2003 Applied Surface Science 207 227

    [19]

    Kiriu S, Miyazoe H, Takamine F, Sai M, Choi J H, Tomai T, Terashima K 2009 Appl . Phys. Lett. 94 191502

    [20]

    Yanguas-Gil A, Focke K, Benedikt J, von Keudella A 2007 J. Appl. Phys. 101 103307

    [21]

    Pellerin S, Musiol K, Pokrzywka B, Chapelle J1996 J. Phys. B 29 3911

    [22]

    Potekhin A Y, Chabrier G, Gilles D, 2002 Phys. Rev. E 65 1

    [23]

    Luque J, Crosley D R 1999 LIFBASE: Database and spectral simulation (version 1.5), SRI International Report No. MP 99—009 (1999)

    [24]

    Yubero C, García M C, Calzada M D 2006 Spectrochimica Acta Part B 61 540

    [25]

    Dong L F, Qi Y Y, Liu W Y, Fan W L 2009 J. Appl. Phys. 106 013301

  • [1]

    NozakiT, UnnoY, MiyazakiY, OkazakiK 2001 J. Phys. D: Appl. Phys. 34 2504

    [2]

    Yang J, Xu Y Q, Zhu L M 2008 Acta Phys . Sin. 57 1788 (in Chinese) [杨 涓、许映乔、朱良明 2008 57 1788]

    [3]

    Fantz U, Wünderlich D 2006 New Journal of Physics 8 301

    [4]

    Wang Q, Doll F, Donnelly V, Economou D J, Sadeghi N, Franz G F 2007 J. Phys. D: Appl. Phys. 40 4202

    [5]

    Zhang H C, Lu J, Ni X W 2009 Acta Phys . Sin. 58 4034 (in Chinese) [张宏超、陆 建、倪晓武 2009 58 4034]

    [6]

    Zhang X H,Huang J, Liu X D,Peng L, Sun Y, Chen W, Feng K C, Yang S Z 2009 Acta Phys . Sin. 58 1595 (in Chinese) [张先徽、黄 骏、刘筱娣、彭 磊、孙 岳、陈 维、冯克成、杨思泽 2009 58 1595]

    [7]

    Zhang Y,Gu B,Wang W C,Peng X W,Wang D Z 2009 Acta Phys . Sin. 58 5532 (in Chinese) [张 燕、顾 彪、王文春、彭许文、王德真 2009 58 5532]

    [8]

    Wang C,Fang Z H,Sun J R, Wang W,Xiong J 2008 Acta Phys. Sin. 57 7770 (in Chinese) [王 琛、方智恒、孙今人、王 伟、熊 俊 2008 57 7770]

    [9]

    Ding Z F, Sun J Z, Wang D Z, Wu J, Zhang J, Zhang P Y 2008 Chin. Phys. B 17 1848

    [10]

    Moisan M, Ferreira C M, Hajlaoui Y, Henry D, Hubert J, Pantel R, Ricard A, Zakrazewski Z 1982 Revue Phys. Appl. 17 707

    [11]

    Kunze K, Miclea M, Musa G, Franzke J, Vadla C, Niemax K, 2002 Spectrochimica Acta B 57137

    [12]

    Abdellatif G, Imam H. 2002 Spectrochimica Acta B:Atomic Spectroscopy 57 1155

    [13]

    Griem H R 1964 Plasma spectroscopy (New York:McGraw-Hill) p492

    [14]

    Wujec T, Olchawa W, Halenka J, Musielok J 2002 Phys. Rev. E 6 066403

    [15]

    Guo Q C, Liu L Y, Wang D Z, Zhang J L 2010 Chin. Phys. B 19 2653

    [16]

    Konjevic ' N 2001 Plasma Sources Sci. Technol.10 356

    [17]

    Pellerin S, Musiol K, Pokrzywka B, Chapelle J 1996 J. Phys. B:At.Mol.Opt.Phys. 29 3911

    [18]

    Ying M J, Xia Y Y, Sun Y M, Lu Q M, Zhao M W, Liu X D 2003 Applied Surface Science 207 227

    [19]

    Kiriu S, Miyazoe H, Takamine F, Sai M, Choi J H, Tomai T, Terashima K 2009 Appl . Phys. Lett. 94 191502

    [20]

    Yanguas-Gil A, Focke K, Benedikt J, von Keudella A 2007 J. Appl. Phys. 101 103307

    [21]

    Pellerin S, Musiol K, Pokrzywka B, Chapelle J1996 J. Phys. B 29 3911

    [22]

    Potekhin A Y, Chabrier G, Gilles D, 2002 Phys. Rev. E 65 1

    [23]

    Luque J, Crosley D R 1999 LIFBASE: Database and spectral simulation (version 1.5), SRI International Report No. MP 99—009 (1999)

    [24]

    Yubero C, García M C, Calzada M D 2006 Spectrochimica Acta Part B 61 540

    [25]

    Dong L F, Qi Y Y, Liu W Y, Fan W L 2009 J. Appl. Phys. 106 013301

  • [1] 马平, 田径, 田得阳, 张宁, 吴明兴, 唐璞. 应用于超高速流场电子密度分布测量的七通道微波干涉仪测量系统.  , 2024, 73(17): 172401. doi: 10.7498/aps.73.20240656
    [2] 颜劭祺, 高继昆, 陈越, 马尧, 朱晓东. 电子束透射氮化硅薄膜窗产生低密度等离子体.  , 2024, 73(14): 144102. doi: 10.7498/aps.73.20240302
    [3] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度.  , 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [4] 冯博文, 王若愚, 马雨彭雪, 钟晓霞. 常压针-板放电等离子体密度演化.  , 2021, 70(9): 095201. doi: 10.7498/aps.70.20201790
    [5] 王浩若, 张冲, 张宏超, 沈中华, 倪晓武, 陆健. 超短脉冲激光与微小水滴相互作用中电子密度和光场的时空分布.  , 2017, 66(12): 127801. doi: 10.7498/aps.66.127801
    [6] 杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生. 同轴枪脉冲放电等离子体输运过程中密度变化的实验研究.  , 2017, 66(5): 055203. doi: 10.7498/aps.66.055203
    [7] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度.  , 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [8] 魏小龙, 徐浩军, 李建海, 林敏, 宋慧敏. 高气压空气环状感性耦合等离子体实验研究和参数诊断.  , 2015, 64(17): 175201. doi: 10.7498/aps.64.175201
    [9] 林敏, 徐浩军, 魏小龙, 梁华, 张艳华. 电磁波在非磁化等离子体中衰减效应的实验研究.  , 2015, 64(5): 055201. doi: 10.7498/aps.64.055201
    [10] 洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜. 电负性气体的掺入对容性耦合Ar等离子体的影响.  , 2013, 62(11): 115202. doi: 10.7498/aps.62.115202
    [11] 刘可, 易佑民, 李良波. 延迟双脉冲激光产生大气等离子体的实验研究.  , 2012, 61(22): 225205. doi: 10.7498/aps.61.225205
    [12] 邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量.  , 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [13] 董克攻, 吴玉迟, 郑无敌, 朱斌, 曹磊峰, 何颖玲, 马占南, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 魏来, 臧华平, 余金清, 谷渝秋, 张保汉, 王晓方. 充气型放电毛细管的密度测量及磁流体模拟.  , 2011, 60(9): 095202. doi: 10.7498/aps.60.095202
    [14] 王巍, 蒋刚. 基于双激发态对稠密等离子体中双电子复合速率系数的研究.  , 2010, 59(11): 7815-7823. doi: 10.7498/aps.59.7815
    [15] 袁行球, 李 辉, 赵太泽, 俞国扬, 郭文康, 须 平. 超声速等离子体射流的数值模拟.  , 2004, 53(8): 2638-2643. doi: 10.7498/aps.53.2638
    [16] 袁行球, 李 辉, 赵太泽, 王 飞, 俞国扬, 郭文康, 须 平. 直流电弧等离子体炬的特性研究.  , 2004, 53(11): 3806-3813. doi: 10.7498/aps.53.3806
    [17] 袁行球, 李 辉, 赵太泽, 王 飞, 郭文康, 须 平. 超音速等离子体炬的数值模拟.  , 2004, 53(3): 788-792. doi: 10.7498/aps.53.788
    [18] 傅喜泉, 郭 弘. x射线激光在激光等离子体中传输变化及其对诊断的影响.  , 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [19] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布.  , 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [20] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较.  , 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
计量
  • 文章访问数:  10827
  • PDF下载量:  1224
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-13
  • 修回日期:  2010-06-04
  • 刊出日期:  2011-02-05

/

返回文章
返回
Baidu
map