Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on Rapid Analysis Model and Extrapolation Method of Neural Network in Spectral Diagnostic

TIAN Wenjing YANG Zongyu XU Min LONG Ting HE Xiaoxue KE Rui YANG Shuosu YU Deliang SHI Zhongbing GAO Zheo

Citation:

Research on Rapid Analysis Model and Extrapolation Method of Neural Network in Spectral Diagnostic

TIAN Wenjing, YANG Zongyu, XU Min, LONG Ting, HE Xiaoxue, KE Rui, YANG Shuosu, YU Deliang, SHI Zhongbing, GAO Zheo
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Real-time measurement and feedback control of key plasma parameters are critical for future fusion reactor operation, with ion temperature being a vital control target as part of the triple product for fusion ignition. However, plasma diagnostics tends to require complex data analysis. To acquire ion temperature Ti from charge exchange recombination spectroscopy (CXRS), a widely used method is through iterative spectral fitting, which is time-consuming and calls for expert intervention during data analysis. On top of that, frequent human expert intervention is needed in the conventional iterative fitting. Therefore, the conventional method cannot meet the meet the demand for real-time Ti measurement. Neural Networks (NN), which is capable of learning the underlying relationships between the measured spectra and Ti, is a promising approach to cope with this problem. In fact, NN approaches have been widely adopted in the field of magnetic confined plasma. Previous study in JET has achieved a satisfactory accuracy for inferring Ti from CXRS spectra compared to the conventional fitting results. Recently the study of disruption prediction has achieved great progress with the help of deep neural networks. However, these researches are conducted in steadily-operating devices, where for NN models, the data distribution is similar in training set and test set. This is not the case for newly-built tokamak like HL-3, or for future fusion reactors such as ITER. For new devices, there will be a period for the plasma parameters to raise from low to high ranges. In this case, investigating the extrapolation capability of NN models based on low parameter training data is of paramount importance.
    A Convolutional Neural Network (CNN)-based model is proposed to accelerate the analysis of spectral data of CXRS, with a focus on investigating the model’s extrapolation capability to much higher Ti ranges. The dataset consists of about 122 thousand pieces of spectral data, along with their corresponding inferred Ti from offline iterative process. The results demonstrate that the CNN-based model provides excellent Ti analysis and reduces the inference time for analyzing a single spectrum to less than 1 ms, which is 100-1000 times faster compared to traditional spectral fitting method. However, the performance of the data-driven neural network model is limited by challenges such as insufficient data and imbalanced data distribution, which further deteriorates the extrapolation capability. Generally, data with higher Ti constitute a small percentage of the total dataset. In the case of our study, only about 5% of the spectra correspond to Ti > 2 keV (among 2-4 keV). Yet they reflect the temperature of central plasma, which is more important for assessing the performance of plasma. To overcome this limitation, the study synthesizes high-temperature data based on experimental data from discharges with Ti in low-temperature range. By incorporating 5% synthetic data into the training set only consisting of data with Ti<2 keV, the model’s extrapolation capability is extended to cover the whole range of Ti < 4 keV. The mean relative error of the mode in 3 keV < Ti < 4 keV is reduced from 35% to below 15%. This approach demonstrates the feasibility of using synthetic data to enhance the performance of artificial intelligence algorithms in the field of magnetic confinement fusion. The findings provide valuable insights for the development of real-time ion temperature measurement and feedback control for future high-parameter fusion devices. Furthermore, the study lays a foundation for research in areas that require high-performance across-device characteristic, such as machine learning-based disruption prediction and tearing mode control.
  • [1]

    Lister J B, Bruzzone P L, Costley A E, Fukuda T, Yu G, Mertens V, Moreau D, Oikawa T, Pitts R A, Portone A, Vayakis G, Wesley J,Yoshino R 2000 Nucl. Fusion 40 1167

    [2]

    Gormezano C, Sips A C C, Luce T C, Ide S, Becoulet A, Litaudon X, Isayama A, Hobirk J, Wade M R, Oikawa T, Prater R, Zvonkov A, Lloyd B, Suzuki T, Barbato E, Bonoli P, Phillips C K, Vdovin V, Joffrin E, Casper T, Ferron J, Mazon D, Moreau D, Bundy R, Kessel C, Fukuyama A, Hayashi N, Imbeaux F, Murakami M, Polevoi A R,St John H E 2007 Nucl. Fusion 47 S285

    [3]

    Hellermann M G V, Mandl W, Summers H P, Weisen H,Wolf R 1990 Rev. Sci. Instrum. 61 3479

    [4]

    Seraydarian R P,Burrell K H 1986 Rev. Sci. Instrum. 57 2012

    [5]

    He X X, Chen W J, Wei Y L, Liu L, Wang S Q, Yu D L 2024 Nuclear Fusion and Plasma Physics 44 477(何小雪, 陈文锦, 魏彦玲, 刘亮, 王诗琴,余德良 2024 核聚变与等离子体物理 44 477)

    [6]

    Zhang Y 2015 M.S. Thesis (Hefei: University of Science and Technology of China) (张镱 2015 硕士学位论文(合肥:中国科学技术大学))

    [7]

    Svensson J, Hellermann M v,König R W T 1999 Plasma Phys. Control. Fusion 41 315

    [8]

    Bishop C M,Roach C M 1992 Rev. Sci. Instrum. 63 4450

    [9]

    Abbate J, Conlin R,Kolemen E 2021 Nucl. Fusion 61 046027

    [10]

    Zheng G H, Yang Z Y, Liu S F, Ma R, Gong X W, Wang A, Wang S,Zhong W L 2024 Nucl. Fusion 64 126041

    [11]

    Yang Z, Xia F, Song X, Gao Z, Wang S,Dong Y 2021 Nucl. Fusion 61 126042

    [12]

    Yang Z, Xia F, Song X, Gao Z, Li Y, Gong X, Dong Y, Zhang Y, Chen C, Luo C, Li B, Zhu X, Ji X, Li Y, Liu L, Gao J,Liu Y 2022 Fusion Eng. Des. 182 113223

    [13]

    Seo J, Kim S K, Jalalvand A, Conlin R, Rothstein A, Abbate J, Erickson K, Wai J, Shousha R,Kolemen E 2024 Nature 626

    [14]

    Duan X R, Xu M, Zhong W L, Ji X Q, Chen W, Shi Z B, Liu X L, Lu B, Li B, Wang Y Q, Li J Q, Zheng G Y, Liu Y, Yang Q W, Yan L W, Cai L J, Li Q, Liu Y, Bai X Y, Cao Z, Chen X, Chen H T, Chen Y H, Dong G Q, Du H L, Fan D M, Gao J M, Geng S F, Hao G Z, He H M, Huang M, Jiang M, Ke R, Liang A S, Li J X, Li Q, Li Y, Li L C, Li H J, Li W B, Liu D Q, Long T, Lu L F, Nie L, Shi P W, Peng J F, Sun A P, Sun T F, Tong R H, Wei H L, Wang S, Xiao G L, Xiao X P, Xue L, Xu H B, Yang Z Y, Yu D L, Yu L M, Zhang Y P, Zheng X, Zhang L, Zhang Y, Zhang F, Zhang X L, Team H L,Collaborators 2024 Nucl. Fusion 64 112021

    [15]

    Duan X R, Xu M, Zhong W L, Liu Y, Song X M, Liu D Q, Wang Y Q, Lu B, Shi Z B, Zheng G Y, Liu Y, Yang Q W, Mao W C, Li Q, Cai L J, Ji X Q, Liu X L, Li L C, Li B, Dong J Q, Ding X T, Yan L W, Artaud J F, Bai X Y, Cao J Y, Cao Z, Chen L, Chen W, Delpech L, Du H L, Ekedahl A, Gao Z, Garcia J, Han M K, Hao G Z, He H M, Hoang G T, Huang M, Isobe M, Jiang M, Liang A S, Liu Y Q, Li D, Li H J, Li J Q, Li J X, Li Q, Li Y, Long T, Mazon D, McKee G R, Qiu Z Y, Peng J F, Peysson Y, Rao J, Song X, Sun T F, Wang Z X, Wei H L, Wen J, Wu N, Xu Y H, Xiao G L, Xiao X P, Xue L, Yan Z, Yang Z Y, Yu D L, Yu L M, Yu Y, Zang L G, Zhang J H, Zhang N, Zhang Y P, Zonca F, Zou X L,Team H-A H-M 2022 Nucl. Fusion 62 042020

    [16]

    Donné A J H, Costley A E, Barnsley R, Bindslev H, Boivin R, Conway G, Fisher R, Giannella R, Hartfuss H, von Hellermann M G, Hodgson E, Ingesson L C, Itami K, Johnson D, Kawano Y, Kondoh T, Krasilnikov A, Kusama Y, Litnovsky A, Lotte P, Nielsen P, Nishitani T, Orsitto F, Peterson B J, Razdobarin G, Sanchez J, Sasao M, Sugie T, Vayakis G, Voitsenya V, Vukolov K, Walker C, Young K,the I T G o D 2007 Nucl. Fusion 47 S337

    [17]

    Wei Y L, Yu D L, Liu L, Ida K, von Hellermann M, Cao J Y, Sun A P, Ma Q, Chen W J, Liu Y, Yan L W, Yang Q W, Duan X R,Liu Y 2014 Rev. Sci. Instrum. 85 103503

    [18]

    He X X, Yu D L, Yan L W, Liu L, Chen W J, Wei Y L, He X F, Ma Q, Shi Z B, Liu Y, Yang Q W, Xu M,Duan X R 2020 Rev. Sci. Instrum. 91 053504

    [19]

    Wang Y F, Zhu X M, Zhang M Z, Meng S F, Chai H, Wang Y, Ning Z X 2021 Acta Phys. Sin., 70, 095211(王彦飞, 朱悉铭, 张明志, 孟圣峰, 贾军伟, 柴昊, 王旸,宁中喜 2021 70 095211-1)

    [20]

    Fei N, Gao Y, Lu Z,Xiang T 2021 IEEE International Conference on Computer Vision 142-151

    [21]

    IEEE Conference on Computer Vision and Pattern Recognition He K, Zhang X, Ren S,Sun J 2015 10.48550/arXiv.1512.03385[2015-12-10]

    [22]

    He M, Yang Z, Liu S, Xia F,Zhong W 2024 Plasma Phys. Control. Fusion 66 105019

    [23]

    Hendrycks D,Gimpel K 2016 10.48550/arXiv.1606.08415[2016-7-8]

    [24]

    Loshchilov I,Hutter F 2017 10.48550/arXiv.1711.05101[2017-11-14]

    [25]

    Yushmanov P N, Takizuka T, Riedel K S, Kardaun O J W F, Cordey J G, Kaye S M,Post D E 1990 Nucl. Fusion 30 1999

    [26]

    Sundararajan M, Taly A,Yan Q 2017 10.48550/arXiv.1703.01365[2017-3-4]

  • [1] Liu Kun, Xiang Hong-Fu, Zhou Xiong-Feng, Xia Hao-Tian, Li Hua. Spectral diagnosis of atmospheric pressure AC argon plasma jet at constant power. Acta Physica Sinica, doi: 10.7498/aps.72.20230307
    [2] Fang Bo-Lang, Wang Jian-Guo, Feng Guo-Bin. Calculation of spot entroid based on physical informed neural networks. Acta Physica Sinica, doi: 10.7498/aps.71.20220670
    [3] Liu Guo-Rong, Zhu Wei-Jun, Chu Run-Tong, Wang Wei, Yuan Ping, An Ting-Ting, Wan Rui-Bin, Sun Dui-Xiong, Ma Yun-Yun, Guo Zhi-Yan. Diagnosis of lightning return stroke channel temperature according to different band spectra. Acta Physica Sinica, doi: 10.7498/aps.71.20211673
    [4] Wei De-Zhi, Chen Fu-Ji, Zheng Xiao-Xue. Internet public opinion chaotic prediction based on chaos theory and the improved radial basis function in neural networks. Acta Physica Sinica, doi: 10.7498/aps.64.110503
    [5] Liu Yu-Feng, Zhang Lian-Shui, He Wan-Lin, Huang Yu, Du Yan-Jun, Lan Li-Juan, Ding Yan-Jun, Peng Zhi-Min. Spectroscopic study on the laser-induced breakdown flame plasma. Acta Physica Sinica, doi: 10.7498/aps.64.045202
    [6] Liang Yi-Han, Hu Guang-Yue, Yuan Peng, Wang Yu-Lin, Zhao Bin, Song Fa-Lun, Lu Quan-Ming, Zheng Jian. Temporal evolutions of the plasma density and temperature of laser-produced plasma expansion in an external transverse magnetic field. Acta Physica Sinica, doi: 10.7498/aps.64.125204
    [7] Liu Yu-Feng, Ding Yan-Jun, Peng Zhi-Min, Huang Yu, Du Yan-Jun. Spectroscopic study on the time evolution behaviors of the laser-induced breakdown air plasma. Acta Physica Sinica, doi: 10.7498/aps.63.205205
    [8] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Separating the Z-pinch plasma X-ray radiation and attaining the electron temperature. Acta Physica Sinica, doi: 10.7498/aps.63.095201
    [9] Chen Tie-Ming, Jiang Rong-Rong. New hybrid stream cipher based on chaos and neural networks. Acta Physica Sinica, doi: 10.7498/aps.62.040301
    [10] Li Hua-Qing, Liao Xiao-Feng, Huang Hong-Yu. Synchronization of uncertain chaotic systems based on neural network and sliding mode control. Acta Physica Sinica, doi: 10.7498/aps.60.020512
    [11] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, doi: 10.7498/aps.60.025203
    [12] Pu Yu-Dong, Yang Jia-Min, Jin Feng-Tao, Zhang Lu, Ding Yong-Kun. Characteristics of emission spectroscopyof radiatively heated Al plasma. Acta Physica Sinica, doi: 10.7498/aps.60.045210
    [13] Zhao Hai-Quan, Zhang Jia-Shu. Adaptive nonlinear channel equalization based on combination neural network for chaos-based communication systems. Acta Physica Sinica, doi: 10.7498/aps.57.3996
    [14] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, doi: 10.7498/aps.57.6120
    [15] Wang Rui-Min, Zhao Hong. The role of neuron transfer function in artificial neural networks. Acta Physica Sinica, doi: 10.7498/aps.56.730
    [16] Wang Yao-Nan, Tan Wen. Genetic-based neural network control for chaotic system. Acta Physica Sinica, doi: 10.7498/aps.52.2723
    [17] Tan Wen, Wang Yao-Nan, Liu Zhu-Run, Zhou Shao-Wu. . Acta Physica Sinica, doi: 10.7498/aps.51.2463
    [18] Fu Xi-Quan, Liu Cheng-Yi, Guo Hong. . Acta Physica Sinica, doi: 10.7498/aps.51.1326
    [19] Dong Jia-Fu, Tang Nian-Yi, Li Wei, Luo Jun-Lin, Guo Gan-Cheng, Zhong Yun-Ze, Liu Yi, Fu Bing-Zhong, Yao Liang-Ye, Feng Bin-Bin, Qin Yun-Wen. . Acta Physica Sinica, doi: 10.7498/aps.51.2074
    [20] CHEN SHU, CHANG SHENG-JIANG, YUAN JING-HE, ZHANG YAN-XIN, K.W.WONG. ADAPTIVE TRAINING AND PRUNING FOR NEURAL NETWORKS:ALGORITHMS AND APPLICATION. Acta Physica Sinica, doi: 10.7498/aps.50.674
Metrics
  • Abstract views:  81
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  17 February 2025

/

返回文章
返回
Baidu
map