搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟

赵曰峰 王超 王伟宗 李莉 孙昊 邵涛 潘杰

引用本文:
Citation:

大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟

赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰

Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure

Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie
PDF
导出引用
  • 甲烷针-板放电与重油加氢耦合形成甲烷转化重油加氢,可实现重油高效加氢并增产高附加值低碳烯烃,有实践应用前景和科学研究意义.建立二维流体模型,对大气压甲烷针-板放电等离子体进行数值模拟,得到电场强度、电子温度和粒子密度的空间与轴向分布,总结反应产额并提炼生成各种带电和中性粒子的关键路径.模拟结果表明,CH3+和CH4+密度与电场强度和电子温度的轴向演化接近且密切相关;CH5+和C2H5+密度沿轴向先增大后减小;CH3与H密度的空间和轴向分布几乎相同;CH2,C2H4与C2H5的粒子密度分布在靠近阴极的区域内明显不同而在正柱区内较为相像;电子与CH4发生电子碰撞电离生成的CH3+和CH4+,CH3+和CH4+分别与CH4发生分子碰撞解离生成C2H5+和CH5+;电子与CH4间的电子碰撞分解是生成CH3,CH2,CH和H的主导反应;CH2与CH4和电子与C2H4发生的反应分别是生成C2H4和C2H2的关键路径;电子与CH4间的电子碰撞分解反应和CH2与CH4发生的反应的产额各占H2总产额的52.15%和47.85%.
    Methane needle-plane discharge has practical application prospect and scientific research significance since methane conversion heavy oil hydrogenation is formed by coupling methane needle-plane discharge with heavy oil hydrogenation, which can achieve high-efficient heavy oil hydrogenation and increase the yields of high value-added light olefins. In this paper, a two-dimensional fluid model is built up for numerically simulating the methane needle-plane discharge plasma at atmospheric pressure. Spatial and axial distributions of electric intensity, electron temperature and particle densities are obtained. Reaction yields are summarized and crucial pathways to produce various kinds of charged and neutral particles are found out. Simulation results indicate that axial evolutions of CH3+ and CH4+ densities, electric intensity and electron temperature are similar and closely related. The CH5+ and C2H5+ densities first increase and then decrease along the axial direction. The CH3 and H densities have nearly identical spatial and axial distributions. Particle density distributions of CH2, C2H4 and C2H5 are obviously different in the area near the cathode but comparatively resemblant in the positive column region. The CH3+ and CH4+ are produced by electron impact ionizations between electrons and CH4. The CH5+ and C2H5+ are respectively generated by molecular impact dissociations between CH3+ and CH4 and between CH4+ and CH4. Electron impact decomposition between electrons and CH4 is a dominated reaction to produce CH3, CH2, CH and H. The reactions between CH2 and CH4 and between electrons and C2H4 are critical pathways to produce C2H4 and C2H2, respectively. In addition, the yields of electron impact decomposition reactions between electrons and CH4 and reactions between CH2 and CH4 account for 52.15% and 47.85% of total yields of H2 respectively.
      通信作者: 邵涛, st@mail.iee.ac.cn;sdnupanjie@163.com ; 潘杰, st@mail.iee.ac.cn;sdnupanjie@163.com
    • 基金项目: 国家自然科学基金(批准号:51637010,51707111)和山东省自然科学基金(批准号:ZR2015AQ008)资助的课题.
      Corresponding author: Shao Tao, st@mail.iee.ac.cn;sdnupanjie@163.com ; Pan Jie, st@mail.iee.ac.cn;sdnupanjie@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51637010, 51707111) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2015AQ008).
    [1]

    Liu C, Chernets I, Ji H, Smith J, Rabinovich A, Dobrynin D, Fridman A 2017 IEEE Trans. Plasma Sci. 45 683

    [2]

    Kang H, Lee D, Kim K, Jo S, Pyun S, Song Y, Yu S 2016 Fuel Process. Technol. 148 209

    [3]

    Bie C D, van Dijk J, Bogaerts A 2015 J. Phys. Chem. C 119 22331

    [4]

    Xu Y, Zhang X, Yang C, Zhang Y, Yin Y 2016 Plasma Sci. Technol. 18 1012

    [5]

    Wang C, Zhang Z, Cui H, Xia W, Xia W 2017 Chin. Phys. B 26 085207

    [6]

    Liu J L, Park H W, Chung W J, Park D W 2016 Plasma Chem. Plasma Proc. 36 437

    [7]

    Zhang Z B, Wu Y, Jia M, Song H M, Sun Z Z, Li Y H 2017 Chin. Phys. B 26 065204

    [8]

    Wang W, Snoeckx R, Zhang X, Cha M S, Bogaerts A Bi Z H, Hong Y, Lei G J, Wang S, Wang Y N, Liu D P 2017 Chin. Phys. B 26 075203

    [9]

    Bi Z H, Hong Y, Lei G J, Wang S, Wang Y N, Liu D P 2017 Chin. Phys. B 26 075203

    [10]

    Zhang D Z, Wang Y H, Wang D Z 2017 Chin. Phys. B 26 065206

    [11]

    Shao T, Wang R X, Zhang C, Yan P 2018 High Voltage 3 14

    [12]

    Gao Y, Zhang S, Liu F, Wang R X, Wang T L, Shao T 2017 Trans. China Electrotechnical Soc. 32 61 (in Chinese)[高远, 张帅, 刘峰, 王瑞雪, 汪铁林, 邵涛 2017 电工技术学报 32 61]

    [13]

    Snoeckx R, Setareh M, Aerts R, Simon P, Maghari A, Bogaerts A 2013 Int. J. Hydrogen Energy 38 16098

    [14]

    Pan J, Li L 2015 J. Phys. D:Appl. Phys. 48 055204

    [15]

    Sun A B, Li H W, Xu P, Zhang G J 2017 Acta Phys. Sin. 66 195101 (in Chinese)[孙安邦, 李晗蔚, 许鹏, 张冠军 2017 66 195101]

    [16]

    Pan J, Li L, Wang Y, Xiu X, Wang C, Song Y 2016 Plasma Sci. Technol. 18 1081

    [17]

    Niu Z T, Zhang C, Ma Y F, Wang R X, Chen G Y, Yan P, Shao T 2015 Acta Phys. Sin. 64 195204 (in Chinese)[牛宗涛, 章程, 马云飞, 王瑞雪, 陈根永, 严萍, 邵涛 2015 64 195204]

    [18]

    Pan J, Li L, Chen B, Song Y, Zhao Y, Xiu X 2016 Eur. Phys. J. D 70 136

    [19]

    Babaeva N Y, Zhang C, Qiu J, Hou X, Tarasenko V F, Shao T 2017 Plasma Sources Sci. Technol. 26 085008

    [20]

    Yang D P, Li S Y, Jiang Y F, Chen A M, Jin M X 2017 Acta Phys. Sin. 66 115201 (in Chinese)[杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星 2017 66 115201]

    [21]

    Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201 (in Chinese)[杨文斌, 周江宁, 李斌成, 邢廷文 2017 66 095201]

    [22]

    Wang B, Yan W, Ge W, Duan X 2013 Chem. Eng. J. 234 354

    [23]

    Levko D, Raja L L 2017 Plasma Sources Sci. Technol. 26 035003

    [24]

    Yin Z Q, Wang Y, Zhang P P, Zhang Q, Li X C 2016 Chin. Phys. B 25 125203

    [25]

    Wang Q, Yu X L, Wang D Z 2017 Chin. Phys. B 26 035201

    [26]

    Herrebout D, Bogaerts A, Yan M, Gijbels R, Goedheer W, Dekempeneer E 2001 J. Appl. Phys. 90 570

    [27]

    Lefkowitz J K, Guo P, Rousso A, Ju Y 2015 Phil. Trans. R. Soc. 373 20140333

    [28]

    Adamovich I V, Li T, Lempert W R 2015 Phil. Trans. R. Soc. 373 20140336

    [29]

    Takana H, Nishiyama H 2014 Plasma Sources Sci. Technol. 23 034001

    [30]

    Nikiforov A Y, Leys C, Gonzalez M A, Walsh J L 2015 Plasma Sources Sci. Technol. 24 034001

    [31]

    Yao C W, Ma H C, Chang Z S, Li P, Mu H B, Zhang G J 2017 Acta Phys. Sin. 66 025203 (in Chinese)[姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军 2017 66 025203]

  • [1]

    Liu C, Chernets I, Ji H, Smith J, Rabinovich A, Dobrynin D, Fridman A 2017 IEEE Trans. Plasma Sci. 45 683

    [2]

    Kang H, Lee D, Kim K, Jo S, Pyun S, Song Y, Yu S 2016 Fuel Process. Technol. 148 209

    [3]

    Bie C D, van Dijk J, Bogaerts A 2015 J. Phys. Chem. C 119 22331

    [4]

    Xu Y, Zhang X, Yang C, Zhang Y, Yin Y 2016 Plasma Sci. Technol. 18 1012

    [5]

    Wang C, Zhang Z, Cui H, Xia W, Xia W 2017 Chin. Phys. B 26 085207

    [6]

    Liu J L, Park H W, Chung W J, Park D W 2016 Plasma Chem. Plasma Proc. 36 437

    [7]

    Zhang Z B, Wu Y, Jia M, Song H M, Sun Z Z, Li Y H 2017 Chin. Phys. B 26 065204

    [8]

    Wang W, Snoeckx R, Zhang X, Cha M S, Bogaerts A Bi Z H, Hong Y, Lei G J, Wang S, Wang Y N, Liu D P 2017 Chin. Phys. B 26 075203

    [9]

    Bi Z H, Hong Y, Lei G J, Wang S, Wang Y N, Liu D P 2017 Chin. Phys. B 26 075203

    [10]

    Zhang D Z, Wang Y H, Wang D Z 2017 Chin. Phys. B 26 065206

    [11]

    Shao T, Wang R X, Zhang C, Yan P 2018 High Voltage 3 14

    [12]

    Gao Y, Zhang S, Liu F, Wang R X, Wang T L, Shao T 2017 Trans. China Electrotechnical Soc. 32 61 (in Chinese)[高远, 张帅, 刘峰, 王瑞雪, 汪铁林, 邵涛 2017 电工技术学报 32 61]

    [13]

    Snoeckx R, Setareh M, Aerts R, Simon P, Maghari A, Bogaerts A 2013 Int. J. Hydrogen Energy 38 16098

    [14]

    Pan J, Li L 2015 J. Phys. D:Appl. Phys. 48 055204

    [15]

    Sun A B, Li H W, Xu P, Zhang G J 2017 Acta Phys. Sin. 66 195101 (in Chinese)[孙安邦, 李晗蔚, 许鹏, 张冠军 2017 66 195101]

    [16]

    Pan J, Li L, Wang Y, Xiu X, Wang C, Song Y 2016 Plasma Sci. Technol. 18 1081

    [17]

    Niu Z T, Zhang C, Ma Y F, Wang R X, Chen G Y, Yan P, Shao T 2015 Acta Phys. Sin. 64 195204 (in Chinese)[牛宗涛, 章程, 马云飞, 王瑞雪, 陈根永, 严萍, 邵涛 2015 64 195204]

    [18]

    Pan J, Li L, Chen B, Song Y, Zhao Y, Xiu X 2016 Eur. Phys. J. D 70 136

    [19]

    Babaeva N Y, Zhang C, Qiu J, Hou X, Tarasenko V F, Shao T 2017 Plasma Sources Sci. Technol. 26 085008

    [20]

    Yang D P, Li S Y, Jiang Y F, Chen A M, Jin M X 2017 Acta Phys. Sin. 66 115201 (in Chinese)[杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星 2017 66 115201]

    [21]

    Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201 (in Chinese)[杨文斌, 周江宁, 李斌成, 邢廷文 2017 66 095201]

    [22]

    Wang B, Yan W, Ge W, Duan X 2013 Chem. Eng. J. 234 354

    [23]

    Levko D, Raja L L 2017 Plasma Sources Sci. Technol. 26 035003

    [24]

    Yin Z Q, Wang Y, Zhang P P, Zhang Q, Li X C 2016 Chin. Phys. B 25 125203

    [25]

    Wang Q, Yu X L, Wang D Z 2017 Chin. Phys. B 26 035201

    [26]

    Herrebout D, Bogaerts A, Yan M, Gijbels R, Goedheer W, Dekempeneer E 2001 J. Appl. Phys. 90 570

    [27]

    Lefkowitz J K, Guo P, Rousso A, Ju Y 2015 Phil. Trans. R. Soc. 373 20140333

    [28]

    Adamovich I V, Li T, Lempert W R 2015 Phil. Trans. R. Soc. 373 20140336

    [29]

    Takana H, Nishiyama H 2014 Plasma Sources Sci. Technol. 23 034001

    [30]

    Nikiforov A Y, Leys C, Gonzalez M A, Walsh J L 2015 Plasma Sources Sci. Technol. 24 034001

    [31]

    Yao C W, Ma H C, Chang Z S, Li P, Mu H B, Zhang G J 2017 Acta Phys. Sin. 66 025203 (in Chinese)[姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军 2017 66 025203]

  • [1] 刘在浩, 刘颖华, 许博坪, 尹培琪, 李静, 王屹山, 赵卫, 段忆翔, 汤洁. 大气压氦气预电离直流辉光放电二维仿真研究.  , 2024, 73(1): 015101. doi: 10.7498/aps.73.20230712
    [2] 方泽, 潘泳全, 戴栋, 张俊勃. 基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用.  , 2024, 73(14): 145201. doi: 10.7498/aps.73.20240343
    [3] 张东荷雨, 刘金宝, 付洋洋. 激光维持等离子体多物理场耦合模型与仿真.  , 2024, 73(2): 025201. doi: 10.7498/aps.73.20231056
    [4] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟.  , 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [5] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究.  , 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [6] 齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁. 射频/直流驱动大气压氩气介质阻挡放电的一维仿真研究.  , 2022, 71(24): 245202. doi: 10.7498/aps.71.20221361
    [7] 冯博文, 王若愚, 马雨彭雪, 钟晓霞. 常压针-板放电等离子体密度演化.  , 2021, 70(9): 095201. doi: 10.7498/aps.70.20201790
    [8] 王倩, 赵江山, 范元媛, 郭馨, 周翊. 不同缓冲气体中ArF准分子激光系统放电特性分析.  , 2020, 69(17): 174207. doi: 10.7498/aps.69.20200087
    [9] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究.  , 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [10] 何寿杰, 张钊, 赵雪娜, 李庆. 微空心阴极维持辉光放电的时空特性.  , 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [11] 姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军. 大气压介质阻挡辉光放电脉冲的阴极位降区特性及其影响因素的数值仿真.  , 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [12] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究.  , 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [13] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟.  , 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [14] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究.  , 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [15] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕. 大气压氩气介质阻挡辉光放电的一维仿真研究.  , 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [16] 李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞. 大气压等离子体针产生空气均匀放电特性研究.  , 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [17] 夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强. 氩气微腔放电中特性参数的数值模拟研究.  , 2011, 60(1): 015201. doi: 10.7498/aps.60.015201
    [18] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究.  , 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [19] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟.  , 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [20] 刘成森, 王德真. 空心圆管端点附近等离子体源离子注入过程中鞘层的时空演化.  , 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
计量
  • 文章访问数:  6994
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-10
  • 修回日期:  2018-02-11
  • 刊出日期:  2019-04-20

/

返回文章
返回
Baidu
map