-
Active particle systems are nonequilibrium systems composed of selfpropelled Brownian particles, where interactions between particles can give rise to various collective behaviors. This study, based on Brownian dynamics simulations, explores the effects of light intensity, rotational diffusion coefficient, and the width and spacing of illuminated regions on the aggregation structures of the system. First, this study examines the influence of light intensity on aggregation structures under different rotational diffusion coefficients, finding that as the rotational diffusion coefficient increases, the system gradually stabilizes. This stabilization is attributed to the reduced collision effects among particles at higher diffusion coefficients. Under suitable rotational diffusion coefficients, gradually increasing the ratio of longitudinal to transverse light-induced self-propulsion forces leads to a transition in the system's aggregation structure from a transverse stripe structure configuration to a tic-tac-toe structure, ultimately resulting in a longitudinal stripe structure. This indicates that the system's aggregation structure can be effectively controlled by varying the relative light intensities of the longitudinal and transverse illumination. From a dynamical perspective, unstable structures consistently exhibit a super-diffusive behavior throughout the simulations, while stable structures transition from initial super-diffusion to normal diffusion, indicating that under steady state conditions, particles aggregate in the shaded regions, exhibiting Brownian motion. To further investigate the influence of light fields on collective particle behavior, this study systematically varied the width of the illuminated regions and the spacing between adjacent illuminated regions, finding that the overall trends were consistent with previous conclusions. It was also observed that wider illuminated regions with narrower spacing facilitate the formation of tictac-toe structures, while narrower illuminated regions with wider spacing tend to lead to the emergence of a novel structure—checkerboard structures. This study investigates the phase separation behavior of particles in complex optical field environments, providing valuable insights for controlling aggregation states in active particle systems.
-
Keywords:
- light field regulation /
- active particle /
- ordered structure
-
[1] Ramaswamy S 2017 J. Stat. Phys 5054002
[2] Ramaswamy S 2010 Annu Rev Conden Ma P 1323
[3] Tailleur J, Cates M E 2008 Phys Rev Lett 100218103
[4] Martinez R, Alarcon F, Rodriguez D R, Aragones J L, Valeriani C 2018 Eur Phys J E 4191
[5] Vladescu I D, Marsden E J, Schwarz-Linek J, Martinez V A, Arlt J, Morozov A N, Marenduzzo D, Cates M E, Poon W C 2014 Phys Rev Lett. 113268101
[6] Schweitzer F, Tilch B, Ebeling W 2000 Eur Phys J B 14157
[7] Erdmann U, Ebeling W, Schimansky-Geier L, Schweitzer F 2000 Eur Phys J B 15105
[8] Schweitzer F, Ebeling W, Tilch B 1998 Phys. Rev. Lett 805044
[9] Yang X, Manning M L, Marchetti M C 2014 Soft matter 106477
[10] Stenhammar J,Tiribocchi A, Allen R J, Marenduzzo D, Cates M E 2013 Phys Rev Lett 111145702
[11] Stenhammar J; Wittkowski R, Marenduzzo D, Cates M E 2015 Phys Rev Lett 114018301
[12] Dolai P, Simha A, Mishra S 2017 Soft matter 146137
[13] Gao Y W, Wang Y, Tian W D, Chen K 2022 Acta Physica Sinica 71240501
[14] Vutukuri H R, Lisicki M, Lauga E, Vermant J 2020 Nat. Commun 112628
[15] Hernández R J, Sevilla F J, Mazzulla A, Pagliusi P, Pellizzi N, Cipparrone G 2020 Soft Matter 167704
[16] Zhang J, Guo J, Mou F, Guan J 2018 Micromachines 988
[17] Bäuerle T, Fischer A, Speck T, Bechinger C 2018 Nat. Commun. 93232
[18] Wang G, Phan T V, Li S, Wombacher M, Qu J, Peng Y, Chen G, Goldman D I, Levin S A, Austin R H, Liu L Y 2021 Phys Rev Lett 126108002
[19] Liu Y P, Wang G, Wang P L, Yuan D M, Hou S X, Jin Y K, Wang J, Liu L Y 2023 Chin. Phys. B 3268701
[20] Humphrey W, Dalke A, Schulten K 1996 Journal of Molecular Graphics 1433
[21] Ning H P, Zhang Y, Zhu H, Ingham A, Huang G S, Mei Y F, Solovev A A 2018 Micromachines 975
[22] Chen H,Zhao Q,Du X 2018 Micromachines 941
[23] Xu L L,Mou F Z,Gong H T,Luo M,Guan J G 2017 Chem. Soc.Rev 466905
[24] Wang W,Duan W T,Ahmed S,Sen A,Mallouk T E 2015 Acc. Chem. Res 481938
[25] Chen C R, Mou F Z, Xu L L, Wang S F, Guan J G, Feng Z P, Wang Q W, Kong L, Li W, Wang J, Zhang Q J 2017 Adv. Mater 293
[26] Tang S S,Zhang F Y,Zhao J,Talaat W,Soto F,Karshalev E,Chen C R,Hu Z H,Lu X L,Li J X,Lin Z H,Dong H F,Zhang X J,Nourhani A,Wang J 2019 Adv. Funct. 2923
[27] Sun Y, Liu Y, Zhang D, Zhang H, Jiang J, Duan R, Xiao J, Xing J, Zhang D, Dong B 2019 ACS Appl Mater Interfaces 1140533
[28] Singh D P, Choudhury U, Fischer P, Mark A G 2017 Adv Mater. 2932
[29] Lin Z, Si T, Wu Z, Gao C, Lin X, He Q 2017 Angew Chem Int Ed Engl 5613517
[30] Wang Y, Shen Z L, Xia Y Q, Feng G Q, Tian W D 2020 Chinese Physics B 29053103
[31] Pan J X,Wei H,Qi M J,Wang H F,Zhang J J,Tian W D,Chen K 2020 Soft matter 165545
[32] Ye S M, Liu P, Wei Z X, Ye F F, Yang M C, Chen K 2020 Chinese Physics B 294655
[33] Zhou X L, Wang Y Z,Xu B J,Liu Y P,Lu D,Luo J,Yang Z Y 2023 AIP Advances 13065332
[34] Chen J M, Zhou X L, Zhang L X 2018 Chinese Physics B 27118701
[35] Quillen A C,Smucker J P,Peshkov A 2020 Physical review. E 101052618
[36] Liu P,Ye S M,Ye F F,Chen K,Yang M C 2020 Phys. Rev. Lett 124158001
[37] Das S, Ghosh S, Chelakkot R 2020 Phys Rev E. 102032619
[38] Das S, Chelakkot R 2020 Soft Matter. 167250
[39] Miloš K,Knežević M,Stark H 2020 New J. Phys 22113025
[40] Chen X G, Lin L H, Li Z C, Sun H J 2022 Adv. Funct. Mater. 322104649
[41] Volpe G, Buttinoni I, Vogt D, Kuemmerer H J, Bechinger C 2011 Soft Matter. 78810
[42] Jahanshahi S, Lozano C, Liebchen B, Löwen H, Bechinger C 2020 Commun Phys 3127
[43] Palacci J, Sacanna S, Steinberg A P, Pine D J, Chaikin P M 2013 Science 339936
[44] Fernandez-Rodriguez M A, Grillo F, Alvarez L, Rathlef M, Buttinoni L, Volpe G, Isa L 2020 Nat Commun 114223
[45] Xia Y Q,Shen Z L,Tian W D,Chen K 2019 J. Chem. Phys. 150154903
[46] Wang C,Li H S,Ma Y Q,Tian W D,Chen K 2018 J. Chem. Phys. 149164902
[47] Shan W J,Zhang F,Tian W D,Chen K 2019 Soft matter 154761
[48] Shi Z X, Jing Y, Jing Y Y, Tian W D, Zhang T H, Chen K 2024 Acta Phys. Sin. 7332(in Chinese)[石子璇,金燕,金奕扬,田文得,张天辉,陈康2024 7332]
[49] Wang J, Jiao Y, Tian W D, Chen K 2023 Acta Phys. Sin. 727(in Chinese)[王晶,焦阳,田文得,陈康2023 727]
[50] Tiwari C,Singh P S 2024 Soft matter 204816
[51] Shen Y F,Hu H X,Luo M B 2024 Soft matter 20621
[52] E. Cates M, Tailleur J 2015 Annu. Rev. Condens. Matter Phys. 6219
[53] Gomez-Solano J R, Samin S, Lozano C, Ruedas-Batuecas P, van Roij R, Bechinger C 2017 Sci Rep. 714891
[54] Caprini L, Marini Bettolo Marconi U, Wittmann R, Löwen H 2022 soft matter 81412
[55] Takatori S C,Yan W, Brady J F 2014 Phys Rev Lett. 113028103
[56] Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G 2016 Rev. Mod. Phys. 88, 045006
[57] Palacci J, Sacanna S, Steinberg A P, Pine D J, Chaikin P M 2013 Science. 339936
计量
- 文章访问数: 58
- PDF下载量: 1
- 被引次数: 0