Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of hollow cathode discharge in oxygen

Zhao Li-Fen Ha Jing Wang Fei-Fan Li Qing He Shou-Jie

Citation:

Simulation of hollow cathode discharge in oxygen

Zhao Li-Fen, Ha Jing, Wang Fei-Fan, Li Qing, He Shou-Jie
PDF
HTML
Get Citation
  • The characteristics, the formations and loss mechanisms of different particles of hollow cathode discharge in oxygen at 266 Pa are investigated by using the fluid model. The model contains 11 kinds of particles and 48 reactions. Under this simulation condition, the negative glow regions corresponding to the surrounding cathodes overlap. The results show that there is a strong hollow cathode effect. The density distributions of different charged and active particles are calculated. The charged particle density is located mainly in the central region of the discharge cell. Electrons and O are the main ingredients of negative charges in the discharge system, and their density peaks are 5.0 × 1011 cm–3 and 1.6 × 1011 cm–3, respectively and ${\rm{O}}_2^+ $ is a main composition of positive charge in the discharge system with a peak density of 6.5 × 1011 cm–3. Abundant active oxygen particles exist in the discharge system, and their density is much higher than those of other charged particles. According to the densities of active particles, their magnitudes are ranked in the small-to-large order as O, O2(a1Δg), O(1D) and O3. Furthermore, the generation and consumption mechanism of electrons, O and ${\rm{O}}_2^+ $ are calculated in detail, and the generation and consumption paths of different active oxygen particles are also given. The results show that there is a complex coupling process among these particles. Each reaction generates a certain number of particles and consumes other particles at the same time, resulting in a dynamic balance among these particles.
      Corresponding author: He Shou-Jie, heshouj@hbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51777051), the Science and Technology Research Projects of Colleges and Universities in Hebei Province, China (Grant No. ZD2020197), and the Science Foundation of Hebei Province, China (Grant No. E2021201037)
    [1]

    Nakagawa Y, Kawakita T, Uchida S, Tochikubo F 2020 J. Phys. D: Appl. Phys. 53 135201Google Scholar

    [2]

    Babu S K, Kelly S, Kechkar S, Swift P, Daniels S, Turner M M 2019 Plasma Sources Sci. Technol. 28 115008Google Scholar

    [3]

    Vagin N P, Ionin A A, Kochetov I V, Napartovich A P, Sinitsyn D V, Yuryshev N N 2017 Plasma Phys. Rep. 43 330Google Scholar

    [4]

    陈维, 黄骏, 李辉, 吕国华, 王兴权, 张国权, 王鹏业, 杨思泽 2012 61 185203Google Scholar

    Chen W, Huang J, Li H, Lv G H, Wang X Q, Zhang G Q, Wang P Y, Yang S Z 2012 Acta Phys. Sin. 61 185203Google Scholar

    [5]

    欧阳吉庭, 张晨阳, 张宇, 刘思含, 缪劲松 2020 北京理工大学学报 40 908Google Scholar

    Ouyang J T, Zhang C Y, Zhang Y, Liu S H, Miao J S 2020 J. B. Inst. Techno. 40 908Google Scholar

    [6]

    Bakeev I Y, Klimov A S, Oks E M, Zenin A A 2021 Vacuum 187 110161

    [7]

    Hou X Y, Zou X B, Li Y T, Zhang L W, Wang X X 2019 High Volt. 4 217Google Scholar

    [8]

    Korolev Y D, Koval N N 2018 J. Phys. D: Appl. Phys. 51 323001Google Scholar

    [9]

    Boeuf J P, Pitchford L C 2005 Appl. Phys. Lett. 86 071501Google Scholar

    [10]

    Fu Y Y, Verboncoeur J P, Christlieb A J 2017 Phys. Plasmas 24 103514Google Scholar

    [11]

    Cong S Y, Wu R H, Mu L, Sun J Z, Wang D Z 2019 J. Phys. D: Appl. Phys. 52 045205Google Scholar

    [12]

    Jiang X X, He F, Chen Q, Ge T, Ouyang J T 2014 Phys. Plasmas 21 033508Google Scholar

    [13]

    夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强 2011 60 015201Google Scholar

    Xia G Q, Xue W H, Chen M L, Zhu Y, Zhu G Q 2011 Acta Phys. Sin. 60 015201Google Scholar

    [14]

    Wei H C, Wang N, Duan Z C, He F 2018 Phys. Plasmas 25 123513Google Scholar

    [15]

    Hou X Y, Fu Y Y, Wang H, Zou X B, Luo H Y, Wang X X 2017 Phys. Plasmas 24 083506Google Scholar

    [16]

    何寿杰, 张钊, 赵雪娜, 李庆 2017 66 055101Google Scholar

    He S J, Zhang Zhao, Zhao X N, Li Q 2017 Acta Phys. Sin. 66 055101Google Scholar

    [17]

    Lavrukevich Y, Ryabtsev A, Tsiolko V 2017 Probl. At. Sci. Technol. 107 215

    [18]

    Bazhenov V Y, Matsevich S V, Piun V M, Tsiolko V V 2015 Probl. At. Sci. Technol. 98 177

    [19]

    Yamatake A, Yasuoka K, Ishii S 2004 Jpn. J. Appl. Phys. 43 6381Google Scholar

    [20]

    Qin Y, He F, Jiang X X, Xie K, Ouyang J T 2014 Phys. Plasmas 21 073501Google Scholar

    [21]

    Matsui M, Ikemoto T, Takayanagi H, Komurasaki K, Arakawa Y 2006 Vacuum 80 1161Google Scholar

    [22]

    He S J, Ha J, Liu S M, Ouyang J T 2013 Phys. Plasmas 20 123504Google Scholar

    [23]

    He J, Zhang Y T T 2012 Plasma Processes Polym. 9 919Google Scholar

    [24]

    Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar

    [25]

    Park G, Lee H, Kim G, Lee J K 2008 Plasma Processes Polym. 5 569Google Scholar

    [26]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [27]

    Baulch D L, Cox R A, Crutzen P J, Hampson R F, Kerr J A, Troe J, Watson R T 1982 J. Phys. Chem. Ref. Data 11 327Google Scholar

    [28]

    Stafford D S, Kushner M J 2004 J. Appl. Phys. 96 2451Google Scholar

    [29]

    冯静 2018 硕士学位论文 (大连: 大连理工大学)

    Feng J 2018 M. S. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [30]

    Kossyi I A, Kostinsky A Y, Matveyev A A 1992 Plasma Sources Sci. Technol. 1 207Google Scholar

    [31]

    Yanallah K, Pontiga F, Fernández-Rueda A, Castellanos A, Belasri A 2008 J. Phys. D: Appl. Phys. 41 195206Google Scholar

    [32]

    Soria C, Pontiga F, Castellanos A 2004 Plasma Sources Sci. Technol. 13 95Google Scholar

    [33]

    Bogdanov E A, Kudryavtsev A A, Tsendin L D, Arslanbekov R R, Kolobov V I, Kudryavtsev V V 2003 Tech. Phys. 48 983Google Scholar

    [34]

    Xu J Z, Zhong P, Li J L, Lin J, Diao Y, Zhang J 2010 Plasma Sci. Technol. 12 601Google Scholar

    [35]

    Gaens W V, Bogaerts A 2013 J. Phys. D:Appl. Phys. 46 275201

    [36]

    Lazzaroni C, Chabert P 2016 Plasma Sources Sci. Technol. 25 065015Google Scholar

    [37]

    Donkó Z 1998 Phys. Rev. E 57 7126Google Scholar

    [38]

    Wei L S, Peng B F, Li M, Zhang Y F 2016 Vacuum 125 123Google Scholar

    [39]

    Pan G S, Tan Z Y, Pan J, Wang X L, Shan C H 2016 Phys. Plasmas 23 043508Google Scholar

    [40]

    Duran-Olivencia F J, Pontiga F, Castellanos A 2014 J. Phys. D:Appl. Phys. 47 415203Google Scholar

    [41]

    Hagelaar G J, Hoog F J, Kroesen G M 2000 Phys. Rev. E 62 1452Google Scholar

    [42]

    Laca M, Morávek M J, Schmiedt, Luká, Hrachová V, Kaňka A 2017 Contrib. Plasma Phys. 57 336Google Scholar

    [43]

    周志向 2020 硕士学位论文 (保定: 河北大学)

    Zhou Z X 2020 M. S. Dissertation (Baoding: Hebei University) (in Chinese)

    [44]

    Costin C, Minea T M, Popa G, Gousset G 2010 J. Vac. Sci. Technol. A 28 322Google Scholar

    [45]

    Yang A J, Wang X H, Rong M Z, Liu D X, Iza F, Kong M G 2011 Phys. Plasmas 18 113503

    [46]

    洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜 2013 62 115202Google Scholar

    Hong B S, Yuan T, Zou S, Tang Z H, Xu D S, Yu Y Q, Wang X S, Xin Y 2013 Acta Phys. Sin. 62 115202Google Scholar

    [47]

    王晓龙, 谭震宇, 潘光胜, 单春虹 2018 高电压技术 44 904Google Scholar

    Wang X L, Tan Z Y, Pan G S, Shan C H 2018 High Volt. Engineer. 44 904Google Scholar

  • 图 1  圆柱形空心阴极放电单元截面图(虚线z = 5.5 mm)

    Figure 1.  Cross section of cylindrical hollow cathode discharge (dashed line z = 5.5 mm).

    图 2  (a) 电势二维分布图; (b) z = 5.5 mm (图 (a) 虚线)处径向电场分布图

    Figure 2.  (a) Two dimensional potential distribution; (b) radial electric field distribution at z = 5.5 mm (dashed line in (a)).

    图 3  二维空间粒子密度分布图 (a)电子; (b) O; (c)${\rm{O}}_2^+ $

    Figure 3.  Two dimensional particles density distribution: (a) Electron; (b) O; (c) ${\rm{O}}_2^+ $.

    图 4  z = 5.5 mm时, 粒子密度径向分布图 (a) 带电粒子; (b) 活性氧粒子

    Figure 4.  Radial distribution of particle density when z = 5.5 mm: (a) Charged particles; (b) reactive oxygen species.

    图 5  二维粒子密度分布图 (a) O; (b) O2 (a1Δg)

    Figure 5.  Two dimensional particles density distribution: (a) O; (b) O2 (a1Δg).

    图 6  z = 5.5 mm处, 电负度$ \alpha $径向分布图

    Figure 6.  Radial distribution of electronegativity at z = 5.5 mm

    图 7  z = 5.5 mm处, 电子(a)生成与(b)消耗反应速率的径向分布图

    Figure 7.  Radial distribution of reaction rates of (a) generation and (b) consumption of electronics at z = 5.5 mm.

    图 8  z = 5.5 mm处, 平均电子能量和电子密度一维径向分布图

    Figure 8.  One dimensional radial distribution of average electron energy and electron density at z = 5.5 mm.

    图 9  z = 5.5 mm处, O离子(a)生成与(b)消耗反应速率的径向分布图

    Figure 9.  Radial distribution of reaction rates of (a) formation and (b) consumption of O at z = 5.5 mm.

    图 10  z = 5.5 mm处, ${\rm{O} }_2^+ $离子(a)生成与(b)消耗反应速率的径向分布图

    Figure 10.  Radial distribution of reaction rates of (a) formation and (b) consumption of ${\rm{O} }_2^+ $ at z = 5.5 mm.

    图 11  z = 5.5 mm处, 氧原子(a)生成与(b)消耗反应速率的径向分布图

    Figure 11.  Radial distribution of reaction rates of (a) formation and (b) consumption of oxygen atom O at z = 5.5 mm.

    图 12  活性粒子生成、损耗路径概要图(实线箭头所指方向为生成粒子, 虚线箭头离开方向为损耗粒子)

    Figure 12.  Outline of active particle generation and consumption path (the direction indicated by the solid line arrow is the generated particle, and the direction left by the dotted line arrow is the loss particle).

    表 1  放电反应类型

    Table 1.  Discharge reactions in the model.

    反应标号 反应方程 反应标号 反应方程
    G1 e + O2 → 2O + e[23] G25 O3 + O(1D) → O2 + 2O[26]
    G2 e + O2 → ${\rm{O}}_2^+ $ + 2e [23] G26 O3 + O(1D) → 2O2[26]
    G3 e + O → O + 2e [23] G27 ${\rm{O}}_2^ + $ + O2 + O2 → ${\rm{O}}_4^+ $ + O2[29]
    G4 e + O2 →O + O(1D) + e[23] G28 ${\rm{O}}_4^+$ + O2 → ${\rm{O}}_2^ + $ + O2 + O2[30]
    G5 e + O → O(1D) + e[23] G29 ${\rm{O}}_4^ + $ + O → ${\rm{O}}_2^ + $ + O3[29]
    G6 e + O2(a1g) → 2O + e[24] G30 e + O(1D) → O + e[23]
    G7 e + O2 → O + O[23] G31 O3 + O2 → 2O2 + O[25]
    G8 e + O3 → ${\rm{O}}_2^ -$ + O[23] G32 O + O2(a1g) → O3 + e[23]
    G9 e + ${\rm{O} }_2^ +$ → 2O[25] G33 O + O2(a1g) → ${\rm{O}}_2^ - $ + O[23]
    G10 O + ${\rm{O} }_2^+$ → 3O[25] G34 O3 + O → O2(a1g) + O2 [31]
    G11 O + O → e + O2[25] G35 O3 + O(1D) → O2(a1g) + O2[32]
    G12 O + O2 → O3 + e[25] G36 O3 + O(1D) → 2O2(a1g) [32]
    G13 ${\rm{O}}_2^ + $ + ${\rm{O}}_2^ - $ → 2O2 [26] G37 ${\rm{O}}_4^ + $ + ${\rm{O}}_3^ - $ → 3O2 + O[33]
    G14 O3 + O → 2O2[25] G38 ${\rm{O}}_4^ + $ + O→ O2 + O3[33]
    G15 O3 + ${\rm{O}}_2^ - $→ ${\rm{O}}_3^ - $ + O2[26] G39 ${\rm{O}}_4^ + $ + O2(a1g) → ${\rm{O}}_2^ + $ + O2 + O2[29]
    G16 O + O3 → ${\rm{O}}_3^ - $ + O[26] G40 e +${\rm{O}}_4^ + $ → O2 + O2[34]
    G17 ${\rm{O}}_3^ - $ + O → ${\rm{O}}_2^ - $ + O2[27] G41 ${\rm{O}}_4^ + $ + ${\rm{O}}_2^ - $→ 3O2[33]
    G18 ${\rm{O}}_3^ - $ + ${\rm{O}}_2^+ $ → O3 + 2O[28] G42 ${\rm{O}}_4^ + $ + O→ O + O2 + O2[35]
    G19 O2(a1g) + O2 → 2O2[25] G43 ${\rm{O}}_4^ + $ + ${\rm{O}}_2^ - $ → O + O + O2 + O2[35]
    G20 O2(a1g) + O → O + O2[25] G44 ${\rm{O}}_4^ + $ + ${\rm{O}}_3^ - $→ O3 + O2 + O2[35]
    G21 O(1D) + O → 2O[23] G45 ${\rm{O}}_2^ - $ + O → O + O2[32]
    G22 O(1D) + O2 → O + O2[26] G46 O + O + O2 → O + O3[36]
    G23 O(1D) + O2 → O + O2(a1g)[26] G47 O + O2 + O2 → O2 + O3[36]
    G24 O3 + O2(a1g) → 2O2 + O[25] G48 O + O2 + O3 → O3 + O3[36]
    DownLoad: CSV

    表 2  电子生成与消耗反应的相应贡献

    Table 2.  The ratio of electron generation and consumption for different reactions.

    电子生成反应贡献/%电子消耗反应贡献/%
    G2: e + O2 → ${\rm{O}}_2^+ $+ 2e99.875G7: e + O2 → O+ O42.418
    G11: O + O → e + O20.114G40: e + ${\rm{O}}_4^+ $→ O2 + O231.748
    G12: O + O2 → O3 + e0.008G9: e + ${\rm{O}}_2^+ $ → 2O25.808
    G32: O + O2(a1g) → O3 + e0.002G8: e + O3 → ${\rm{O}}_2^- $ + O0.026
    G3: e + O → O + 2e7.0 × 10–4
    DownLoad: CSV

    表 3  O生成与消耗反应的相应贡献

    Table 3.  Ratio of Ogeneration and consumption for different reactions.

    O生成反应贡献/%O消耗反应贡献/%
    G7: e + O2 → O + O99.998G10: O +${\rm{O} }_2^+ $ → 3O86.712
    G45: ${\rm{O} }_2^- $ + O → O + O20.002G11: O + O → e + O28.548
    G38: ${\rm{O} }_4^+ $ + O → O2 + O33.809
    G12: O + O2 → O3 + e0.631
    G32: O + O2(a1g) → O3 + e0.135
    G42: ${\rm{O} }_4^+ $ + O → O + O2 + O20.055
    G3: e + O → O + 2e0.055
    G33: O + O2(a1g) → ${\rm{O} }_2^- $ + O0.045
    G16: O + O3 → ${\rm{O} }_3^- $ + O0.011
    DownLoad: CSV

    表 4  ${\rm{O} }_2^+ $生成与消耗反应的相应贡献

    Table 4.  The ratio of ${\rm{O} }_2^+ $ generation and consumption for different reactions.

    ${\rm{O} }_2^+ $生成反应贡献/%${\rm{O} }_2^+ $消耗反应贡献/%
    G2: e + O2 → ${\rm{O} }_2^+ $ + 2e99.993G27: ${\rm{O} }_2^+ $ + O2 + O2 → ${\rm{O} }_4^+ $ + O244.657
    G28: ${\rm{O} }_4^+ $ + O2 → ${\rm{O} }_2^+ $ + O2 + O20.007G9: e + ${\rm{O} }_2^+ $ → 2O30.675
    G29: ${\rm{O} }_4^+ $ + O → ${\rm{O} }_2^+ $ + O35.8×10–4G10: O + ${\rm{O} }_2^+ $ → 3O24.634
    G39: ${\rm{O} }_4^+ $ + O2(a1g)→${\rm{O} }_2^+ $ + O2 + O26.9×10–6G13: ${\rm{O} }_2^+ $ + ${\rm{O} }_2^- $ → 2O20.032
    G18: ${\rm{O} }_3^-$ +${\rm{O} }_2^+ $ → O3 + 2O0.002
    DownLoad: CSV

    表 5  O生成与消耗反应的相应贡献

    Table 5.  Ratio of O generation and consumption for different reactions.

    O生成反应贡献/%O消耗反应贡献/%
    G4: e + O2 → O + O(1D) + e45.255G5: e + O → O(1D) + e56.855
    G22: O(1D) + O2 → O + O239.217G11: O + O → e + O226.231
    G1: e + O2 → 2O + e8.725G47: O2 + O2 + O → O2 + O316.765
    G23:O(1D) + O2→O + O2(a1g)5.602G29: ${\rm{O} }_4^+ $ + O → ${\rm{O} }_2^+ $ + O30.135
    G7: e + O2 → O + O0.567G45: ${\rm{O} }_2^-$ + O→ O + O20.012
    G9: e +${\rm{O} }_2^+ $ → 2O0.345G46: O + O + O2 → O + O30.001
    G10: O + ${\rm{O} }_2^+ $ → 3O0.277G17: ${\rm{O} }_3^- $ + O → ${\rm{O} }_2^- $ + O27.7 × 10–4
    其他0.012G14: O3 + O → 2O23.4 × 10–4
    G34: O3 + O→O2(a1g) + O21.9 × 10–4
    G48: O + O2 + O3 → O3 + O36.0 × 10–7
    DownLoad: CSV
    Baidu
  • [1]

    Nakagawa Y, Kawakita T, Uchida S, Tochikubo F 2020 J. Phys. D: Appl. Phys. 53 135201Google Scholar

    [2]

    Babu S K, Kelly S, Kechkar S, Swift P, Daniels S, Turner M M 2019 Plasma Sources Sci. Technol. 28 115008Google Scholar

    [3]

    Vagin N P, Ionin A A, Kochetov I V, Napartovich A P, Sinitsyn D V, Yuryshev N N 2017 Plasma Phys. Rep. 43 330Google Scholar

    [4]

    陈维, 黄骏, 李辉, 吕国华, 王兴权, 张国权, 王鹏业, 杨思泽 2012 61 185203Google Scholar

    Chen W, Huang J, Li H, Lv G H, Wang X Q, Zhang G Q, Wang P Y, Yang S Z 2012 Acta Phys. Sin. 61 185203Google Scholar

    [5]

    欧阳吉庭, 张晨阳, 张宇, 刘思含, 缪劲松 2020 北京理工大学学报 40 908Google Scholar

    Ouyang J T, Zhang C Y, Zhang Y, Liu S H, Miao J S 2020 J. B. Inst. Techno. 40 908Google Scholar

    [6]

    Bakeev I Y, Klimov A S, Oks E M, Zenin A A 2021 Vacuum 187 110161

    [7]

    Hou X Y, Zou X B, Li Y T, Zhang L W, Wang X X 2019 High Volt. 4 217Google Scholar

    [8]

    Korolev Y D, Koval N N 2018 J. Phys. D: Appl. Phys. 51 323001Google Scholar

    [9]

    Boeuf J P, Pitchford L C 2005 Appl. Phys. Lett. 86 071501Google Scholar

    [10]

    Fu Y Y, Verboncoeur J P, Christlieb A J 2017 Phys. Plasmas 24 103514Google Scholar

    [11]

    Cong S Y, Wu R H, Mu L, Sun J Z, Wang D Z 2019 J. Phys. D: Appl. Phys. 52 045205Google Scholar

    [12]

    Jiang X X, He F, Chen Q, Ge T, Ouyang J T 2014 Phys. Plasmas 21 033508Google Scholar

    [13]

    夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强 2011 60 015201Google Scholar

    Xia G Q, Xue W H, Chen M L, Zhu Y, Zhu G Q 2011 Acta Phys. Sin. 60 015201Google Scholar

    [14]

    Wei H C, Wang N, Duan Z C, He F 2018 Phys. Plasmas 25 123513Google Scholar

    [15]

    Hou X Y, Fu Y Y, Wang H, Zou X B, Luo H Y, Wang X X 2017 Phys. Plasmas 24 083506Google Scholar

    [16]

    何寿杰, 张钊, 赵雪娜, 李庆 2017 66 055101Google Scholar

    He S J, Zhang Zhao, Zhao X N, Li Q 2017 Acta Phys. Sin. 66 055101Google Scholar

    [17]

    Lavrukevich Y, Ryabtsev A, Tsiolko V 2017 Probl. At. Sci. Technol. 107 215

    [18]

    Bazhenov V Y, Matsevich S V, Piun V M, Tsiolko V V 2015 Probl. At. Sci. Technol. 98 177

    [19]

    Yamatake A, Yasuoka K, Ishii S 2004 Jpn. J. Appl. Phys. 43 6381Google Scholar

    [20]

    Qin Y, He F, Jiang X X, Xie K, Ouyang J T 2014 Phys. Plasmas 21 073501Google Scholar

    [21]

    Matsui M, Ikemoto T, Takayanagi H, Komurasaki K, Arakawa Y 2006 Vacuum 80 1161Google Scholar

    [22]

    He S J, Ha J, Liu S M, Ouyang J T 2013 Phys. Plasmas 20 123504Google Scholar

    [23]

    He J, Zhang Y T T 2012 Plasma Processes Polym. 9 919Google Scholar

    [24]

    Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar

    [25]

    Park G, Lee H, Kim G, Lee J K 2008 Plasma Processes Polym. 5 569Google Scholar

    [26]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [27]

    Baulch D L, Cox R A, Crutzen P J, Hampson R F, Kerr J A, Troe J, Watson R T 1982 J. Phys. Chem. Ref. Data 11 327Google Scholar

    [28]

    Stafford D S, Kushner M J 2004 J. Appl. Phys. 96 2451Google Scholar

    [29]

    冯静 2018 硕士学位论文 (大连: 大连理工大学)

    Feng J 2018 M. S. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [30]

    Kossyi I A, Kostinsky A Y, Matveyev A A 1992 Plasma Sources Sci. Technol. 1 207Google Scholar

    [31]

    Yanallah K, Pontiga F, Fernández-Rueda A, Castellanos A, Belasri A 2008 J. Phys. D: Appl. Phys. 41 195206Google Scholar

    [32]

    Soria C, Pontiga F, Castellanos A 2004 Plasma Sources Sci. Technol. 13 95Google Scholar

    [33]

    Bogdanov E A, Kudryavtsev A A, Tsendin L D, Arslanbekov R R, Kolobov V I, Kudryavtsev V V 2003 Tech. Phys. 48 983Google Scholar

    [34]

    Xu J Z, Zhong P, Li J L, Lin J, Diao Y, Zhang J 2010 Plasma Sci. Technol. 12 601Google Scholar

    [35]

    Gaens W V, Bogaerts A 2013 J. Phys. D:Appl. Phys. 46 275201

    [36]

    Lazzaroni C, Chabert P 2016 Plasma Sources Sci. Technol. 25 065015Google Scholar

    [37]

    Donkó Z 1998 Phys. Rev. E 57 7126Google Scholar

    [38]

    Wei L S, Peng B F, Li M, Zhang Y F 2016 Vacuum 125 123Google Scholar

    [39]

    Pan G S, Tan Z Y, Pan J, Wang X L, Shan C H 2016 Phys. Plasmas 23 043508Google Scholar

    [40]

    Duran-Olivencia F J, Pontiga F, Castellanos A 2014 J. Phys. D:Appl. Phys. 47 415203Google Scholar

    [41]

    Hagelaar G J, Hoog F J, Kroesen G M 2000 Phys. Rev. E 62 1452Google Scholar

    [42]

    Laca M, Morávek M J, Schmiedt, Luká, Hrachová V, Kaňka A 2017 Contrib. Plasma Phys. 57 336Google Scholar

    [43]

    周志向 2020 硕士学位论文 (保定: 河北大学)

    Zhou Z X 2020 M. S. Dissertation (Baoding: Hebei University) (in Chinese)

    [44]

    Costin C, Minea T M, Popa G, Gousset G 2010 J. Vac. Sci. Technol. A 28 322Google Scholar

    [45]

    Yang A J, Wang X H, Rong M Z, Liu D X, Iza F, Kong M G 2011 Phys. Plasmas 18 113503

    [46]

    洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜 2013 62 115202Google Scholar

    Hong B S, Yuan T, Zou S, Tang Z H, Xu D S, Yu Y Q, Wang X S, Xin Y 2013 Acta Phys. Sin. 62 115202Google Scholar

    [47]

    王晓龙, 谭震宇, 潘光胜, 单春虹 2018 高电压技术 44 904Google Scholar

    Wang X L, Tan Z Y, Pan G S, Shan C H 2018 High Volt. Engineer. 44 904Google Scholar

  • [1] Fang Ze, Pan Yong-Quan, Dai Dong, Zhang Jun-Bo. Physics-informed neural networks based on source term decoupled and its application in discharge plasma simulation. Acta Physica Sinica, 2024, 73(14): 145201. doi: 10.7498/aps.73.20240343
    [2] Li Chen-Pu, Wu Wei-Xia, Zhang Li-Gang, Hu Jin-Jiang, Xie Ge-Ying, Zheng Zhi-Gang. Separation of active chiral particles with different diffusion coefficients. Acta Physica Sinica, 2024, 73(20): 200201. doi: 10.7498/aps.73.20240686
    [3] Ai Fei, Liu Zhi-Bing, Zhang Yuan-Tao. Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning. Acta Physica Sinica, 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [4] Qi Bing, Tian Xiao, Wang Jing, Wang Yi-Shan, Si Jin-Hai, Tang Jie. One-dimensional simulation of Ar dielectric barrier discharge driven by combined rf/dc sources at atmospheric pressure. Acta Physica Sinica, 2022, 71(24): 245202. doi: 10.7498/aps.71.20221361
    [5] Wang Qian, Zhao Jiang-Shan, Fan Yuan-Yuan, Guo Xin, Zhou Yi. Analysis of ArF excimer laser system discharge characteristics in different buffer gases. Acta Physica Sinica, 2020, 69(17): 174207. doi: 10.7498/aps.69.20200087
    [6] Liao Jing-Jing, Lin Fu-Jun. Diffusion and separation of binary mixtures of chiral active particles driven by time-delayed feedback. Acta Physica Sinica, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [7] He Shou-Jie, Zhou Jia, Qu Yu-Xiao, Zhang Bao-Ming, Zhang Ya, Li Qing. Simulation on complex dynamics of hollow cathode discharge in argon. Acta Physica Sinica, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [8] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [9] Yao Cong-Wei, Ma Heng-Chi, Chang Zheng-Shi, Li Ping, Mu Hai-Bao, Zhang Guan-Jun. Simulations of the cathode falling characteristics and its influence factors in atmospheric pressure dielectric barrier glow discharge pulse. Acta Physica Sinica, 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [10] He Shou-Jie, Zhang Zhao, Zhao Xue-Na, Li Qing. Spatio-temporal characteristics of microhollow cathode sustained discharge. Acta Physica Sinica, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [11] Dong Ye, Dong Zhi-Wei, Zhou Qian-Hong, Yang Wen-Yuan, Zhou Hai-Jing. Ionization parameters of high power microwave flashover on dielectric window surface calculated by particle-in-cell simulation for fluid modeling. Acta Physica Sinica, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [12] Li Yuan, Mu Hai-Bao, Deng Jun-Bo, Zhang Guan-Jun, Wang Shu-Hong. Simulational study on streamer discharge in transformer oil under positive nanosecond pulse voltage. Acta Physica Sinica, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [13] He Shou-Jie, Ha Jing, Liu Zhi-Qiang, Ouyang Ji-Ting, He Feng. Simulation of hollow cathode discharge by combining the fluid model with a transport model for metastable Ar atoms. Acta Physica Sinica, 2013, 62(11): 115203. doi: 10.7498/aps.62.115203
    [14] Zhang Zeng-Hui, Zhang Guan-Jun, Shao Xian-Jun, Chang Zheng-Shi, Peng Zhao-Yu, Xu Hao. Modelling study of dielectric barrier glow discharge in Ar/NH3 mixture at atmospheric pressure. Acta Physica Sinica, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [15] Zhang Zeng-Hui, Shao Xian-Jun, Zhang Guan-Jun, Li Ya-Xi, Peng Zhao-Yu. One-dimensional simulation of dielectric barrier glow discharge in atmospheric pressure Ar. Acta Physica Sinica, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [16] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [17] Zhou Li-Na, Wang Xin-Bing. A fluid model for the simulation of discharges in microhollow cathode. Acta Physica Sinica, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [18] Liu Cheng Sen, Wang De Zhen. Plasma source ion implantation near the end of a cylindrical bore using an auxiliary electrode for finite rise time voltage pulses. Acta Physica Sinica, 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
    [19] Yu Jian-Hua, Lai Jian-Jun, Huang Jian-Jun, Wang Xin-Bin, Qui Jun-Lin. . Acta Physica Sinica, 2002, 51(9): 2080-2085. doi: 10.7498/aps.51.2080
    [20] LAI JIAN-JUN, YU JIAN-HUA, HUANG JIAN-JUN, WANG XIN-BING, QIU JUN-LIN. SELF-CONSISTENT DESCRIPTION OF A DC HOLLOW CATHODE DISCHARGE AND ANALYSIS OF CATHODE SPUTTERING. Acta Physica Sinica, 2001, 50(8): 1528-1533. doi: 10.7498/aps.50.1528
Metrics
  • Abstract views:  4996
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  18 June 2021
  • Accepted Date:  12 September 2021
  • Available Online:  10 January 2022
  • Published Online:  20 January 2022

/

返回文章
返回
Baidu
map