Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of flow rate of shielding gas on distribution of particles in coaxial double-tube helium atmospheric pressure plasma jet

Chen Zhong-Qi Zhong An Dai Dong Ning Wen-Jun

Citation:

Effect of flow rate of shielding gas on distribution of particles in coaxial double-tube helium atmospheric pressure plasma jet

Chen Zhong-Qi, Zhong An, Dai Dong, Ning Wen-Jun
PDF
HTML
Get Citation
  • In the application of atmospheric pressure plasma jet, the influence of ambient gas cannot be ignored, especially in some specific scenarios which are highly sensitive to ambient particles. Coaxial double-tube plasma jet device is a promising method of controlling the chemical properties of jet effluent by restraining the mutual diffusion between jet effluent and ambient gas. In this work, the discharge characteristics and chemical properties of coaxial double-tube helium atmospheric pressure plasma jet at different flow rates of shielding gas are studied numerically, and the model is validated by experimental optical images. The results illustrate the enhanced discharge at the high flow rate, the weaker discharge at the low flow rate, and discharge behaviors without shielding gas as well. With the increase of shielded gas flow rate, the particle density increases in the discharge space, which can be attributed to the wider main discharge channel caused by the increase of shielding gas flow rate. In addition, the analysis shows the great difference in ion fluxes affected by the flow rate of the SG between the contour lines of different helium mole fractions. This study further reveals that different discharge positions have a great influence on the generation of nitrogen and oxygen particles, thus deepening the understanding of influence of shielding gas flow rate on discharge behavior, and may open up new opportunities for the further application of plasma jet.
      Corresponding author: Dai Dong, ddai@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51877086).
    [1]

    孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭 2021 70 095205Google Scholar

    Kong D L, Yang B Y, He F, Han R Y, Miao J S, Song T L, Ouyang J T 2021 Acta Phys. Sin. 70 095205Google Scholar

    [2]

    张海宝, 陈强 2021 70 095203Google Scholar

    Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203Google Scholar

    [3]

    李寿哲, 谢士辉, 吴悦, 廖宏达 2021 高电压技术 47 3012Google Scholar

    Li S Z, Xie S H, Wu Y, Liao H D 2021 High Voltage Eng. 47 3012Google Scholar

    [4]

    Winter J, Brandenburg R, Weltmann K D 2015 Plasma Sources Sci. Technol. 24 064001Google Scholar

    [5]

    易善婷, 刘峰, 方志 2019 高电压技术 45 1936Google Scholar

    Yi S T, Liu F, Fang Z 2019 High Voltage Eng. 45 1936Google Scholar

    [6]

    Lu X, Ostrikov K 2018 Appl. Phys. Rev. 5 031102Google Scholar

    [7]

    Cai Y K, Lv L, Lu X P 2021 High Voltage 6 1092Google Scholar

    [8]

    潘如政, 臧子豪, 黄邦斗, 朱文超, 章程, 邵涛 2021 高电压技术 47 3696Google Scholar

    Pan R Z, Zang Z H, Huang B D, Zhu W C, Zhang C, Shao T 2021 High Voltage Eng. 47 3696Google Scholar

    [9]

    Neyts E C, Ostrikov K K, Sunkara M K, Bogaerts A 2015 Chem. Rev. 115 13408Google Scholar

    [10]

    Wu S L, Yang Q, Shao T, Zhang Z T, Huang L Y 2020 High Voltage 5 15Google Scholar

    [11]

    Cheng H, Liu X, Lu X P, Liu D W 2016 High Voltage 1 62Google Scholar

    [12]

    杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英 2021 70 155201Google Scholar

    Yang L J, Song C H, Zhao N, Zhou S, Wu J C, Jia P Y 2021 Acta Phys. Sin. 70 155201Google Scholar

    [13]

    Laroussi M, Lu X, Keidar M 2017 J. Appl. Phys. 122 020901Google Scholar

    [14]

    Penkov O V, Khadem M, Lim W S, Kim D E 2015 J. Coat. Technol. Res. 12 225Google Scholar

    [15]

    Jiang B, Zheng J T, Qiu S, Wu M B, Zhang Q H, Yan Z F, Xue Q Z 2014 Chem. Eng. J. 236 348Google Scholar

    [16]

    朱彦熔, 常正实 2022 71 025202Google Scholar

    Zhu Y R, Chang Z S 2022 Acta Phys. Sin. 71 025202Google Scholar

    [17]

    王瑞雪, 沈苑, 章程, 牛铮, 方志, 邵涛 2015 高电压技术 41 2903Google Scholar

    Wang R X, Shen Y, Zhang C, Niu Z, Fang Z, Shao T 2015 High Voltage Eng. 41 2903Google Scholar

    [18]

    Yue Y F, Wu F, Cheng H, Xian Y B, Liu D W, Lu X P, Pei X K 2017 J. Appl. Phys. 121 033302Google Scholar

    [19]

    Léveillé V, Coulombe S 2005 Plasma Sources Sci. Technol. 14 467Google Scholar

    [20]

    Reuter S, Winter J, Schmidt-Bleker A, Tresp H, Hammer M U, Weltmann K-D 2012 IEEE Trans. Plasma Sci. 40 2788Google Scholar

    [21]

    Ohashi H, Oyama K, Mitani T, Naiki K, Nakayama T, Ito H 2017 IEEE Trans. Plasma Sci. 45 2481Google Scholar

    [22]

    Winter J, Sousa J S, Sadeghi N, Schmidt-Bleker A, Reuter S, Puech V 2015 Plasma Sources Sci. Technol. 24 025015Google Scholar

    [23]

    Nguyen D B, Trinh Q H, Mok Y S, Lee W G 2020 Plasma Sources Sci. Technol. 29 035014Google Scholar

    [24]

    Karakas E, Koklu M, Laroussi M 2010 J. Phys. D:Appl. Phys. 43 155202Google Scholar

    [25]

    赵莉华, 冀一玮, 尚豪, 黄小龙, 任俊文, 宁文军 2021 中国电机工程学报 41 6090Google Scholar

    Zhao L H, Ji Y W, Shang H, Huang X L, Ren J W, Ning W J 2021 Proc. CSEE 41 6090Google Scholar

    [26]

    Yan W, Economou D J 2017 J. Phys. D:Appl. Phys. 50 415205Google Scholar

    [27]

    Ning W J, Dai D, Zhang Y H, Han Y X, Li L C 2018 J. Phys. D:Appl. Phys. 51 125204Google Scholar

    [28]

    Breden D, Miki K, Raja L L 2012 Plasma Sources Sci. Technol. 21 034011Google Scholar

    [29]

    Lazarou C, Anastassiou C, Topala I, Chiper A S, Mihaila I, Pohoata V, Georghiou G E 2018 Plasma Sources Sci. Technol. 27 105007Google Scholar

    [30]

    Lin P, Zhang J, Nguyen T, Donnelly V M, Economou D J 2021 J. Phys. D:Appl. Phys. 54 075205Google Scholar

    [31]

    Liu X Y, Pei X K, Lu X P, Liu D W 2014 Plasma Sources Sci. Technol. 23 035007Google Scholar

    [32]

    Kettlitz M, Höft H, Hoder T, Weltmann K D, Brandenburg R 2013 Plasma Sources Sci. Technol. 22 025003Google Scholar

    [33]

    Yan W, Xia Y, Bi Z H, Song Y, Wang D Z, Sosnin E A, Skakun V S, Liu D P 2017 J. Phys. D:Appl. Phys. 50 345201Google Scholar

    [34]

    Zhang Y H, Ning W J, Dai D 2018 AIP Adv. 8 035008Google Scholar

    [35]

    Pinchuk M, Stepanova O, Kurakina N, Spodobin V 2017 J. Phys. Conf. Ser. 830 012060Google Scholar

    [36]

    Mohamed A A H, Kolb J F, Schoenbach K H 2010 Eur. Phys. J. D 60 517Google Scholar

    [37]

    Basher A H, Mohamed A-A H 2018 J. Appl. Phys. 123 193302Google Scholar

    [38]

    Xiong R H, Xiong Q, Nikiforov A Y, Vanraes P, Leys C 2012 J. Appl. Phys. 112 033305Google Scholar

    [39]

    Viegas P, Slikboer E, Obrusník A, Bonaventura Z, Sobota A, Garcia-Caurel E, Guaitella O, Bourdon A 2018 Plasma Sources Sci. Technol. 27 094002Google Scholar

    [40]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [41]

    Yuan X H, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495Google Scholar

    [42]

    Lazarou C, Belmonte T, Chiper A S, Georghiou G E 2016 Plasma Sources Sci. Technol. 25 055023Google Scholar

    [43]

    Murakami T, Niemi K, Gans T, O'Connell D, Graham W G 2012 Plasma Sources Sci. Technol. 22 015003Google Scholar

    [44]

    Kossyi A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar

  • 图 1  实验装置示意图

    Figure 1.  Schematic diagram of experimental setup.

    图 2  仿真模型的几何结构

    Figure 2.  The geometry of the simulation model.

    图 3  不同SG流速下的放电光学图像 (a), (c) 0 slm; (b) 1 slm; (d) 3 slm. 红色曲线表示放电时最明亮的区域

    Figure 3.  The discharge optical images for the different SG flow rates: (a), (c) 0 slm; (b) 1 slm; (d) 3 slm. The red curve shows the brightest region of the discharge.

    图 4  (a), (c) 不同SG流速下98%氦气摩尔分数的轮廓线; (b) 氦气摩尔分数(cHe)在轴向位置z = 2.5 mm处的径向分布

    Figure 4.  (a), (c) The contour line of the 98% helium mole fraction at different flow rates of SG; (b) the distribution of the helium mole fraction(cHe) at axial position of z = 2.5 mm.

    图 5  当SG流速处于(a) 0, (b) 1, (c) 2和(d) 3 slm情况下, 电子密度ne(单位: m–3, 以对数形式表示)的时空分布. 洋红色线分别表示不同氦气摩尔分数的等值轮廓线

    Figure 5.  Spatial and temporal profiles of the electron density ne (unit: m–3, in 10 logarithmic scale) for SG flow rates of (a) 0, (b) 1, (c) 2 and (d) 3 slm. The magenta lines are the contour lines of different helium mole fractions.

    图 6  SG流速为(a) 0 和(b) 3 slm情况下放电空间中电离率(单位: mol·m–3·s–1, 以对数形式表示)的时空演化情况. 洋红色线分别表示不同氦气摩尔分数的等值轮廓线

    Figure 6.  Development of the ionization rate (unit: mol·m–3·s–1, in 10 logarithmic scale) in the discharge region for SG flow rate of (a) 0 and (b) 3 slm. The magenta lines are the contour lines of different helium mole fractions.

    图 7  放电空间中(a)粒子平均数密度及(b)各粒子时间空间平均生成速率

    Figure 7.  (a) The average species density and (b) the average spatiotemporal production rate of the species in discharge region.

    图 8  轴向位置z = 2.5 mm, He*粒子的生成速率沿径向分布

    Figure 8.  Radial distribution of the production rate of He* at axial position z = 2.5 mm.

    图 9  不同氦气浓度轮廓线表面的离子径向通量

    Figure 9.  Radial flux of ions on the contour lines of different helium mole fractions.

    图 10  不同氦气浓度轮廓线表面的化学反应速率

    Figure 10.  Reaction rate on the contour lines of different helium mole fractions.

    图 11  当SG流速为(a) 0和(b) 3 slm时, 轴向位置z = 2.5 mm处的离子密度沿径向位置分布

    Figure 11.  Distribution of ion density at axial position z = 2.5 mm for SG flow rate of (a) 0 and (b) 3 slm.

    图 12  不同氦气浓度轮廓线表面的径向电场变化情况

    Figure 12.  Variation of the radial electric field on the contour lines of different helium mole fractions.

    图 13  $\rm N_2^+ $$\rm O_2^+ $的化学反应速率的空间分布. 洋红色线分别表示不同氦气摩尔分数的等值轮廓线

    Figure 13.  Spatial distribution of the reaction rates involving (a) $\rm O_2^+ $ and (b) $\rm N_2^+ $. The magenta lines are the contour lines of different helium mole fractions.

    表 1  中性气体流动模型的边界条件

    Table 1.  Boundary conditions of the neutral gas flow model.

    边界表达式备注
    AX对称轴
    BCui = 3 slm, c = 1工作气体入口
    DEuo, c = 0屏蔽气体入口
    FGu = 0.1 m/s, c = 0环境空气入口
    GWp = 1 atm, ${{\boldsymbol{n}}} \cdot {D_{\text{d} } }\nabla c = 0$
    BPO, CQRD,
    UW, ESTF
    u = 0 m/s, ${{\boldsymbol{n}}} \cdot {D_{\text{d} } }\nabla c = 0$
    DownLoad: CSV

    表 2  等离子体动力学模型的边界条件

    Table 2.  Boundary conditions of the plasma dynamics model.

    边界表达式备注
    IPOV = V0, 方程(9)—方程(12)外施电压
    HX对称轴
    IJ, KL$- {\boldsymbol{n}} \cdot {\boldsymbol{D}} = 0$, $- {\boldsymbol{n} } \cdot {\boldsymbol{\varGamma} } {\text{e} } = 0$, $- {\boldsymbol{n}} \cdot {\boldsymbol{\varGamma}} {\varepsilon } = 0$
    TVV = 0, $- {\boldsymbol{n}} \cdot {\boldsymbol{\varGamma}} {\text{e} } = 0$, $- {\boldsymbol{n}} \cdot {\boldsymbol{\varGamma}} {\varepsilon } = 0$接地
    TM, XYVV = 0接地
    UV, LST, JQRK方程(9)—方程(12), 方程(14), 方程(15)
    DownLoad: CSV

    表 A  等离子体化学反应

    Table A.  Chemical reactions considered in the plasma dynamics model.

    序号反应方程式速率常数能量损耗
    /eV
    参考
    文献
    1${\rm{e+He\to e+He}}$f(c, ε) (m3·s–1)/[40]
    2${\rm{e+He\to e+He^{\ast}}}$f(c, ε) (m3·s–1)19.82[40]
    3${\rm{e+He^{\ast }\to e+He}} $f(c, ε) (m3·s–1)–19.82[40]
    4${\rm{e+He\to 2e+He^{+}}} $f(c, ε) (m3·s–1)24.587[40]
    5${\rm{e+N_{2}\to e+N_{2}}} $f(c, ε) (m3·s–1)/[40]
    6${\rm{e+N_{2}\to e+N_{2}(VIB\, \textit{v}1)}}$f(c, ε) (m3·s–1)0.2889[40]
    7${\rm{e+N_{2}\to e+N_{2}(VIB\, 3\textit{v}1)} }$f(c, ε) (m3·s–1)0.8559[40]
    8${\rm{e+N_{2}\to e+N_{2}(VIB\, 4\textit{v}1)} }$f(c, ε) (m3·s–1)1.1342[40]
    9${\rm{e+N_{2}\to e+N_{2}(VIB \,5\textit{v}1)} }$f(c, ε) (m3·s–1)1.4088[40]
    10${\rm{e+N_{2}\to 2e+N_{2}^{+}}} $f(c, ε) (m3·s–1)15.6[40]
    11${\rm{e+O_{2}\to e+O_{2}}} $f(c, ε) (m3·s–1)/[40]
    12${\rm{e+O_{2}\to O+O^{-}}} $f(c, ε) (m3·s–1)/[40]
    13${\rm{e+O_{2}\to O_{2}^{-}}} $f(c, ε) (m3·s–1)/[40]
    14${\rm{e+O_{2}\to e+O_{2}(VIB\, 3\textit{v}1)} }$f(c, ε) (m3·s–1)0.57[40]
    15${\rm{e+O_{2}\to e+O_{2}(VIB\, 4\textit{v}1)} }$f(c, ε) (m3·s–1)0.75[40]
    16${\rm{e+O_{2}\to e+O_{2} } }(\rm A1)$f(c, ε) (m3·s–1)0.997[40]
    17${\rm{e+O_{2}\to e+O_{2}}} $f(c, ε) (m3·s–1)–0.997[40]
    18${\rm{e+O_{2}\to e+O_{2} } }(\rm B1)$f(c, ε) (m3·s–1)1.627[40]
    19${\rm{e+O_{2}\to e+O_{2}}} $f(c, ε) (m3·s–1)–1.627[40]
    20${\rm{e+O_{2}\to e+O_{2}(EXC)}} $f(c, ε) (m3·s–1)4.5[40]
    21${\rm{e+O_{2}\to e+O+O}} $f(c, ε) (m3·s–1)5.58[40]
    22${\rm{e+O_{2}\to e+O+O(^{1}D)}} $f(c, ε) (m3·s–1)8.4[40]
    23${\rm{e+O_{2}\to 2e+O_{2}^{+}}}$f(c, ε)(m3·s–1)12.1[40]
    24${\rm{e+He^{\ast }\to 2e+He^{+}}} $$4.661 \times {10^{ - 16} } \times {T_{\text{e} } ^{0.6}} \times { {\rm{e} }^{ - 4.78/T_{\text{e} } } }\,({\rm m}^3{\cdot} {\rm{s} }^{-1})$4.78[41]
    25${\rm{e+He_{2}^{\ast }\to 2e+He_{2}^{+}}} $$1.268 \times {10^{ - 18} } \times {T_{\text{e} }^{0.71} }\times { {\text{e} }^{ - 3.4/T_{\text{e} } } }\, ({\rm m}^3{\cdot} {\rm{s} }^{-1})$3.4[41]
    26${\rm{2He^{\ast }\to e+He+He^{+}}} $4.5 × 10–16 (m3·s–1)–15[41]
    27${\rm{e+He_{2}^{+}\to He^{\ast}+He}} $$5.386\times10^{-13}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$/[41]
    28${\rm{e+He^{+}\to He^{\ast}}} $$6.76\times10^{-19}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$/[41]
    29${\rm{2e+He^{+}\to e+He^{\ast}}} $$6.186\times10^{-39}\times T_{\rm e}^{-4.4}\rm (m^3{\cdot} s^{-1})$/[31]
    30${\rm{e+He+He^{+}\to He+He^{\ast}}} $$6.66\times10^{-42}\times T_{\rm e}^{-2}\rm (m^6{\cdot} s^{-1})$/[31]
    31${\rm{2e+He_{2}^{+}\to He_{2}^{\ast}+e}} $1.2 × 10–33 (m6·s–1)/[31]
    32${\rm{e+He+He_{2}^{+}\to He_{2}^{\ast }+He}} $1.5 × 10–39 (m6·s–1)/[31]
    33${\rm{e+He+He_{2}^{+}\to He^{\ast }+2He}} $3.5 × 10–39 (m6·s–1)/[31]
    34${\rm{2e+He_{2}^{+}\to He^{\ast }+He+e}} $2.8 × 10–32 (m6·s–1)/[31]
    35${\rm{e+N_{2}\to e+N+N}} $$1\times10^{-16}\times T_{\rm e}^{-0.5}\times {\rm e}^{{-16}/T_{\rm{e} }}\rm (m^3{\cdot} s^{-1})$9.757[42]
    36${\rm{e+N_{2}^{+}\to N+N}} $$4.8\times10^{-13}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$/[42]
    37${\rm{e+N_{2}^{+}\to N_{2}}} $$7.72\times10^{-14}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$/[43]
    38${\rm{e+N_{4}^{+}\to 2N_{2}}} $$3.22\times10^{-13}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$/[44]
    39${\rm{2e+N_{2}^{+}\to N_{2}+e}} $$3.165\times10^{-42}\times T_{\rm e}^{-0.8}\rm (m^6 \cdot s^{-1})$/[44]
    40${\rm{e+2O_{2}\to O_{2}+O_{2}^{-}}} $$5.17\times10^{-43}\times T_{\rm e}^{-1}\rm (m^6{\cdot} s^{-1})$–0.43[44]
    41${\rm{e+O_{2}^{+}\to O+O}} $$6\times10^{-11}\times T_{\rm e}^{-1}\rm (m^3{\cdot} s^{-1})$–6.91[44]
    42${\rm{e+O_{2}^{+}\to O_{2}}} $4 × 10–18 (m3·s–1)/[43]
    43${\rm{e+O_{4}^{+}\to 2O_{2}}} $$2.25\times10^{-13}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$/[44]
    44${\rm{He^{\ast}+ 2He \to He_{2}^{\ast }+He}} $1.3 × 10–45 (m6·s–1)/[41]
    45${\rm{He^{+}+2He\to He_{2}^{+}+He}} $1 × 10–43 (m6·s–1)/[41]
    46${\rm{N_{2}+N_{2}+N_{2}^{+}\to N_{2}+N_{4}^{+}}} $5 × 10–41 (m6·s–1)/[44]
    47${\rm{O^{-}+O_{2}^{+}\to O+O_{2}}} $2 × 10–13 (m3·s–1)/[41]
    48${\rm{O_{2}^{-}+O_{2}^{+}\to O_{2}+O_{2}}} $2 × 10–13 (m3·s–1)/[41]
    49${\rm{O_{2}^{-}+O_{2}^{+}+O_{2}\to 3O_{2}}} $2 × 10–37 (m6·s–1)/[44]
    50${\rm{O_{2}^{-}+O_{4}^{+}+O_{2}\to 4O_{2}}} $2 × 10–37 (m6·s–1)/[44]
    51${\rm{O_{2}+O_{2}+O_{2}^{+}\to O_{2}+O_{4}^{+}}} $2.4 × 10–42 (m6·s–1)/[44]
    52${\rm{He^{\ast }+N_{2}\to e+He+N_{2}^{+}}} $7 × 10–17 (m3·s–1)/[41]
    53${\rm{He_{2}^{\ast }+N_{2}\to e+2He+N_{2}^{+}}} $7 × 10–17 (m3·s–1)/[41]
    54${\rm{He_{2}^{\ast }+O_{2}\to e+2He+O_{2}^{+}}} $3.6 × 10–16 (m3·s–1)/[43]
    55${\rm{He^{\ast }+O_{2}\to e+He+O_{2}^{+}}} $2.6 × 10–16 (m3·s–1)/[43]
    56${\rm{He_{2}^{+}+N_{2}\to N_{2}^{+}+2He}} $5 × 10–16 (m3·s–1)/[41]
    57${\rm{He^{+}+N_{2}\to N_{2}^{+}+He}} $5 × 10–16 (m3·s–1)/[41]
    58${\rm{He+N_{2}+N_{2}^{+}\to He+N_{4}^{+}}} $8.9 × 10–42 (m6·s–1)/[42]
    59${\rm{He+O_{2}+O_{2}^{+}\to He+O_{4}^{+}}} $5.8 × 10–43 (m6·s–1)/[42]
    60${\rm{He+O_{2}^{-}+O_{2}^{+}\to He+2O_{2}}} $2 × 10–37 (m6·s–1)/[43]
    61${\rm{O_{2}^{-}+O_{2}^{+}+N_{2}\to 2O_{2}+N_{2}}} $2 × 10–37 (m6·s–1)/[43]
    62${\rm{O_{2}^{-}+O_{4}^{+}+N_{2}\to 3O_{2}+N_{2}}} $2 × 10–37 (m6·s–1)/[44]
    63${\rm{N_{2}+O_{2}+N_{2}^{+}\to O_{2}+N_{4}^{+}}} $5 × 10–41 (m6·s–1)/[44]
    64${\rm{O_{2}+N_{4}^{+}\to 2N_{2}+O_{2}^{+}}} $2.5 × 10–16 (m3·s–1)/[44]
    65${\rm{O_{2}+N+N\to O_{2}+N_{2}}} $3.9 × 10–45 (m6·s–1)/[43]
    66${\rm{O+O+N\to O_{2}+N}} $3.2 × 10–45 (m6·s–1)/[42]
    注: f(c, ε)表示速率系数是通过电子能量分布函数(EEDF)使用相关文献中的横截面获得的. c表示He摩尔分数, ε表示平均电子能量(eV), neTe表示电子密度(m–3) 和电子温度(eV). 他代表He(23S)和He(21S). He2*代表He2(a3∑u+). N2(VIB v1), N2(VIB 3v1), N2(VIB 4v1)和N2(VIB 5v1)被视为N2, O2(VIB 3v1), O2(VIB 4v1), O2(A1), O2(B1)和O2(EXC)被视为O2; O(1D)和O(1S)被视为O.
    DownLoad: CSV

    表 3  $ \rm N_2^+, N_4^+和O_2^+ $相关的化学反应速率

    Table 3.  Reaction rates involving $ \rm N_2^+, N_4^+ \text{ and }O_2^+ $

    反应cHe = 98%轮
    廓线上
    化学反应速率
    /(mol·m–2·s–1)
    cHe = 95%轮
    廓线上
    化学反应速率
    /(mol·m–2·s–1)
    cHe = 90%轮
    廓线上
    化学反应速率
    /(mol·m–2·s–1)
    R41: e + $\rm O_2^+$ → O + O2.98 × 10–31.27 × 10–33.81 × 10–4
    R46: N2 + N2 + $\rm N_2^+ $ → N2 + $\rm N_4^+$1.67 × 10–41.61 × 10–52.67 × 10–7
    R51: O2 + O2 + $\rm O_2^+$ → O2 + $\rm O_4^+$8.86 × 10–73.83 × 10–66.70 × 10–6
    R52: He* + N2 → e + He + $\rm N_2^+ $1.29 × 10–34.48 × 10–54.96 × 10–7
    R55: He* + O2 → e + He + $\rm O_2^+$1.28 × 10–34.42 × 10–54.90 × 10–7
    R58: He + N2 + $\rm N_2^+ $ → He + $\rm N_4^+ $1.86 × 10–36.92 × 10–55.41 × 10–7
    R63: N2 + O2 + $\rm N_2^+ $ → O2 + $\rm N_4^+ $4.45 × 10–54.29 × 10–67.09 × 10–8
    R64: O2 + $\rm N_4^+ $ → 2N2 + $\rm O_2^+$1.59 × 10–39.67 × 10–41.10 × 10–4
    DownLoad: CSV
    Baidu
  • [1]

    孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭 2021 70 095205Google Scholar

    Kong D L, Yang B Y, He F, Han R Y, Miao J S, Song T L, Ouyang J T 2021 Acta Phys. Sin. 70 095205Google Scholar

    [2]

    张海宝, 陈强 2021 70 095203Google Scholar

    Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203Google Scholar

    [3]

    李寿哲, 谢士辉, 吴悦, 廖宏达 2021 高电压技术 47 3012Google Scholar

    Li S Z, Xie S H, Wu Y, Liao H D 2021 High Voltage Eng. 47 3012Google Scholar

    [4]

    Winter J, Brandenburg R, Weltmann K D 2015 Plasma Sources Sci. Technol. 24 064001Google Scholar

    [5]

    易善婷, 刘峰, 方志 2019 高电压技术 45 1936Google Scholar

    Yi S T, Liu F, Fang Z 2019 High Voltage Eng. 45 1936Google Scholar

    [6]

    Lu X, Ostrikov K 2018 Appl. Phys. Rev. 5 031102Google Scholar

    [7]

    Cai Y K, Lv L, Lu X P 2021 High Voltage 6 1092Google Scholar

    [8]

    潘如政, 臧子豪, 黄邦斗, 朱文超, 章程, 邵涛 2021 高电压技术 47 3696Google Scholar

    Pan R Z, Zang Z H, Huang B D, Zhu W C, Zhang C, Shao T 2021 High Voltage Eng. 47 3696Google Scholar

    [9]

    Neyts E C, Ostrikov K K, Sunkara M K, Bogaerts A 2015 Chem. Rev. 115 13408Google Scholar

    [10]

    Wu S L, Yang Q, Shao T, Zhang Z T, Huang L Y 2020 High Voltage 5 15Google Scholar

    [11]

    Cheng H, Liu X, Lu X P, Liu D W 2016 High Voltage 1 62Google Scholar

    [12]

    杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英 2021 70 155201Google Scholar

    Yang L J, Song C H, Zhao N, Zhou S, Wu J C, Jia P Y 2021 Acta Phys. Sin. 70 155201Google Scholar

    [13]

    Laroussi M, Lu X, Keidar M 2017 J. Appl. Phys. 122 020901Google Scholar

    [14]

    Penkov O V, Khadem M, Lim W S, Kim D E 2015 J. Coat. Technol. Res. 12 225Google Scholar

    [15]

    Jiang B, Zheng J T, Qiu S, Wu M B, Zhang Q H, Yan Z F, Xue Q Z 2014 Chem. Eng. J. 236 348Google Scholar

    [16]

    朱彦熔, 常正实 2022 71 025202Google Scholar

    Zhu Y R, Chang Z S 2022 Acta Phys. Sin. 71 025202Google Scholar

    [17]

    王瑞雪, 沈苑, 章程, 牛铮, 方志, 邵涛 2015 高电压技术 41 2903Google Scholar

    Wang R X, Shen Y, Zhang C, Niu Z, Fang Z, Shao T 2015 High Voltage Eng. 41 2903Google Scholar

    [18]

    Yue Y F, Wu F, Cheng H, Xian Y B, Liu D W, Lu X P, Pei X K 2017 J. Appl. Phys. 121 033302Google Scholar

    [19]

    Léveillé V, Coulombe S 2005 Plasma Sources Sci. Technol. 14 467Google Scholar

    [20]

    Reuter S, Winter J, Schmidt-Bleker A, Tresp H, Hammer M U, Weltmann K-D 2012 IEEE Trans. Plasma Sci. 40 2788Google Scholar

    [21]

    Ohashi H, Oyama K, Mitani T, Naiki K, Nakayama T, Ito H 2017 IEEE Trans. Plasma Sci. 45 2481Google Scholar

    [22]

    Winter J, Sousa J S, Sadeghi N, Schmidt-Bleker A, Reuter S, Puech V 2015 Plasma Sources Sci. Technol. 24 025015Google Scholar

    [23]

    Nguyen D B, Trinh Q H, Mok Y S, Lee W G 2020 Plasma Sources Sci. Technol. 29 035014Google Scholar

    [24]

    Karakas E, Koklu M, Laroussi M 2010 J. Phys. D:Appl. Phys. 43 155202Google Scholar

    [25]

    赵莉华, 冀一玮, 尚豪, 黄小龙, 任俊文, 宁文军 2021 中国电机工程学报 41 6090Google Scholar

    Zhao L H, Ji Y W, Shang H, Huang X L, Ren J W, Ning W J 2021 Proc. CSEE 41 6090Google Scholar

    [26]

    Yan W, Economou D J 2017 J. Phys. D:Appl. Phys. 50 415205Google Scholar

    [27]

    Ning W J, Dai D, Zhang Y H, Han Y X, Li L C 2018 J. Phys. D:Appl. Phys. 51 125204Google Scholar

    [28]

    Breden D, Miki K, Raja L L 2012 Plasma Sources Sci. Technol. 21 034011Google Scholar

    [29]

    Lazarou C, Anastassiou C, Topala I, Chiper A S, Mihaila I, Pohoata V, Georghiou G E 2018 Plasma Sources Sci. Technol. 27 105007Google Scholar

    [30]

    Lin P, Zhang J, Nguyen T, Donnelly V M, Economou D J 2021 J. Phys. D:Appl. Phys. 54 075205Google Scholar

    [31]

    Liu X Y, Pei X K, Lu X P, Liu D W 2014 Plasma Sources Sci. Technol. 23 035007Google Scholar

    [32]

    Kettlitz M, Höft H, Hoder T, Weltmann K D, Brandenburg R 2013 Plasma Sources Sci. Technol. 22 025003Google Scholar

    [33]

    Yan W, Xia Y, Bi Z H, Song Y, Wang D Z, Sosnin E A, Skakun V S, Liu D P 2017 J. Phys. D:Appl. Phys. 50 345201Google Scholar

    [34]

    Zhang Y H, Ning W J, Dai D 2018 AIP Adv. 8 035008Google Scholar

    [35]

    Pinchuk M, Stepanova O, Kurakina N, Spodobin V 2017 J. Phys. Conf. Ser. 830 012060Google Scholar

    [36]

    Mohamed A A H, Kolb J F, Schoenbach K H 2010 Eur. Phys. J. D 60 517Google Scholar

    [37]

    Basher A H, Mohamed A-A H 2018 J. Appl. Phys. 123 193302Google Scholar

    [38]

    Xiong R H, Xiong Q, Nikiforov A Y, Vanraes P, Leys C 2012 J. Appl. Phys. 112 033305Google Scholar

    [39]

    Viegas P, Slikboer E, Obrusník A, Bonaventura Z, Sobota A, Garcia-Caurel E, Guaitella O, Bourdon A 2018 Plasma Sources Sci. Technol. 27 094002Google Scholar

    [40]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [41]

    Yuan X H, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495Google Scholar

    [42]

    Lazarou C, Belmonte T, Chiper A S, Georghiou G E 2016 Plasma Sources Sci. Technol. 25 055023Google Scholar

    [43]

    Murakami T, Niemi K, Gans T, O'Connell D, Graham W G 2012 Plasma Sources Sci. Technol. 22 015003Google Scholar

    [44]

    Kossyi A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar

  • [1] Peng Yi, Wang ChunJing, Li Jing, Gao KaiYue, Xu HanCheng, Chen ChuanJie, Qian MuYang, Dong BinYan, WangDeZhen. Numerical Simulation Study on the Mechanism of Plasma Dissociation of Carbon Dioxide in Atmospheric Pressure Packed-Bed Reactors. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.73.20241241
    [2] Zhou Xiong-Feng, Chen Bin, Liu Kun. Characteristics of argon discharge plasma jet: comprehensive effects of discharge voltage, gas flow rate, and external magnetic field. Acta Physica Sinica, 2024, 73(22): 225201. doi: 10.7498/aps.73.20241166
    [3] Liu Kun, Xiang Hong-Fu, Zhou Xiong-Feng, Xia Hao-Tian, Li Hua. Spectral diagnosis of atmospheric pressure AC argon plasma jet at constant power. Acta Physica Sinica, 2023, 72(11): 115201. doi: 10.7498/aps.72.20230307
    [4] Zhu Yan-Rong, Chang Zheng-Shi. Effects of pulse voltage rising edge on discharge evolution of He atmospheric pressure plasma jet in dielectric tube. Acta Physica Sinica, 2022, 71(2): 025202. doi: 10.7498/aps.71.20210470
    [5] Zhong Wang-Shen, Chen Ye-Li, Qian Mu-Yang, Liu San-Qiu, Zhang Jia-Liang, Wang De-Zhen. Zero-dimensional numerical simulation of dry reforming of methane in atmospheric pressure non-equilibrium plasma. Acta Physica Sinica, 2021, 70(7): 075206. doi: 10.7498/aps.70.20201700
    [6] Zhang Ya-Rong, Han Qian-Han, Guo Ying, Zhang Jing, Shi Jian-Jun. Discharge characteristics and mechanism of plasma plume generated by atmospheric pulsed discharge. Acta Physica Sinica, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [7] Kong De-Lin, Yang Bing-Yan, He Feng, Han Ruo-Yu, Miao Jin-Song, Song Ting-Lu, Ouyang Ji-Ting. Deposition of titanium oxide films by atmospheric pressure corona discharge plasma jet. Acta Physica Sinica, 2021, 70(9): 095205. doi: 10.7498/aps.70.20202181
    [8] Chen Jian, Liu Zhi-Qiang, Guo Heng, Li He-Ping, Jiang Dong-Jun, Zhou Ming-Sheng. Physical characteristics of ion extraction simulation system based on gas discharge plasma jet. Acta Physica Sinica, 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [9] Guo Heng, Zhang Xiao-Ning, Nie Qiu-Yue, Li He-Ping, Zeng Shi, Li Zhi-Hui. Numerical modelling for characteristics of the meso-pressure six-phase alternative current arc discharge plasma jet. Acta Physica Sinica, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [10] Guo Heng, Su Yun-Bo, Li He-Ping, Zeng Shi, Nie Qiu-Yue, Li Zhan-Xian, Li Zhi-Hui. Characteristics of meso-pressure six-phase alternative current arc discharge plasma jet: Experiments. Acta Physica Sinica, 2018, 67(4): 045201. doi: 10.7498/aps.67.20172556
    [11] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [12] Liu Fu-Cheng, Yan Wen, Wang De-Zhen. Two-dimensional simulation of atmospheric pressure cold plasma jets in a needle-plane electrode configuration. Acta Physica Sinica, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [13] Huang Jun, Chen Wei, Li Hui, Wang Peng-Ye, Yang Si-Ze. Inactivation of Hela cancer cells by an atmospheric pressure cold plasma jet. Acta Physica Sinica, 2013, 62(6): 065201. doi: 10.7498/aps.62.065201
    [14] Dong Li-Fang, Liu Wei-Yuan, Yang Yu-Jie, Wang Shuai, Ji Ya-Fei. Spectral diagnostics of electron density of plasma torch at atmospheric pressure. Acta Physica Sinica, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [15] Li Xue-Chen, Yuan Ning, Jia Peng-Ying, Chang Yuan-Yuan, Ji Ya-Fei. Characteristics of atmospheric pressure air uniform discharge generated by a plasma needle. Acta Physica Sinica, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [16] Yu Liang, Li Xiao-Dong, Wang Yu, Ni Ming-Jiang, Yan Jian-Hua, Tu Xin. Characterization of atmospheric pressuredc gliding arc plasma. Acta Physica Sinica, 2011, 60(1): 015101. doi: 10.7498/aps.60.015101
    [17] Liu Li-Ying, Zhang Jia-Liang, Guo Qing-Chao, Wang De-Zhen. Diagnostics of the atmospheric pressure plasma jets for plasma enhanced chemical vapor deposition of polycrystalline silicon thin film. Acta Physica Sinica, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [18] Jiang Nan, Cao Ze-Xian. Experimental studies on an atmospheric pressure He plasma jet. Acta Physica Sinica, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [19] Sun Jiao, Zhang Jia-Liang, Wang De-Zhen, Ma Teng-Cai. A novel cold plasma jet generated by capillary atmospheric dielectric barrier discharge. Acta Physica Sinica, 2006, 55(1): 344-350. doi: 10.7498/aps.55.344
    [20] Yan Jian-Hua, Tu Xin, Ma Zeng-Yi, Pan Xin-Chao, Cen Ke-Fa, Cheron Bruno. Characterization of DC argon plasma jet at atmospheric pressure. Acta Physica Sinica, 2006, 55(7): 3451-3457. doi: 10.7498/aps.55.3451
Metrics
  • Abstract views:  4240
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  08 March 2022
  • Accepted Date:  14 April 2022
  • Available Online:  11 August 2022
  • Published Online:  20 August 2022

/

返回文章
返回
Baidu
map