Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ar-Kr resonance energy transfer in He/Ar/Kr optically pumped rare gas laser medium

Shen Yuan-Yi Lei Peng Wang Xin-Bing Zuo Du-Luo

Citation:

Ar-Kr resonance energy transfer in He/Ar/Kr optically pumped rare gas laser medium

Shen Yuan-Yi, Lei Peng, Wang Xin-Bing, Zuo Du-Luo
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • High metastable density is one of the research hotspots of optically pumped rare gas laser (OPRGL). Considering that the Ar metastable state energy level is only 20 cm–1 different from the Kr excited state 5p[3/2]2, argon gas is added to the He/Kr discharge system. Owing to the long lifetime of the Ar metastable state atoms, through the collision resonance energy transfer process of Ar(4s[3/2]2)→Kr(5p[3/2]2), the purpose of supplementing and increasing the metastable density of Kr (Kr*) can be realized. In the case of obtaining the same metastable density, the pressure of the discharge power source is reduced, and a new idea is provided for further obtaining a high metastable density in a large discharge volume. In this work, the experimental analysis is carried out from the perspectives of spectral diagnosis and measurement of metastable density by laser absorption spectroscopy. The results show that the peak of radiative transition line of Kr high energy level atoms participating in the collision to the metastable state energy level is significantly enhanced after adding argon, and the tail signal of the transition line is extended within one discharge cycle. Under the gas conditions of 100 mbar, 1% Kr and 12.5% Ar, the peak value of the spectral line can be enhanced by about 10 times, and the tail signal of the transition line can be extended from 0.6 μs to 14.25 μs. At the same time, the density of Kr metastable energy level atoms is measured under different Ar content. Under the gas conditions of 100 mbar, 15% Ar and 1% Kr, the density of Kr* increases from 4.94×1011 cm–3 to 6.96×1012 cm–3. At low pressure, the absorption linewidth of Kr metastable atoms narrows with the increase of Ar content. Under the gas condition of 600 mbar and 1% Kr, when the content of Ar is increased to 5%, the peak density of Kr* increases from 4.69×1013 cm–3 to 5.79×1013 cm–3, i.e. the increment is 20%. Although the enhancement of metastable-atom-generation at high pressure is not so significant as those at low pressure, an increasing trend can still be observed. The results verify that the Kr metastable atoms generated in each discharge period can be supplemented by Ar-Kr resonance energy transfer.
      Corresponding author: Zuo Du-Luo, zuoduluo@hust.edu.cn
    [1]

    Qi Y, Yi H Y, Huang J J, Kuang Y 2021 Laser Optoelectron. P. 58 0700003Google Scholar

    [2]

    Krupke W F 2012 Prog. Quantum Electron. 36 4Google Scholar

    [3]

    Pitz G A, Stalnaker D M, Guild E M, Oliker B Q, Moran P J, Townsend S W, Hostutler D A 2016 High Energy/ Average Power Lasers and Intense Beam Applications IX San Francisco, CA, February 15–16, 2016 972902

    [4]

    齐予, 易亨瑜, 黄吉金, 匡艳 2021 激光与光电子学进展 58 46

    Qi Y, Yi H Y, Huang J J, Kuang Y 2021 Laser Optoelectron P. 58 46

    [5]

    Han J D, Heaven M C 2012 Opt. Lett. 37 2157Google Scholar

    [6]

    Kim H, Hopwood J 2019 J. Appl. Phys. 126 163301Google Scholar

    [7]

    Mikheyev P A, Chernyshov A K, Ufimtsev N I, Vorontsova E A, Azyazov V N 2015 J. Quant. Spectrosc. Radiat. Transf. 164 1Google Scholar

    [8]

    Mikheyev P A, Chernyshov A K, Ufimtsev N I, Vorontsova E A 2015 Tunable Diode-laser Spectroscopy (TDLS) of 811.5 nm Ar Line for Ar(4s[3/2]2) Number Density Measurements in a 40 MHz RF Discharge (Vol. 9255) (SPIE) 92552W

    [9]

    Mikheyev P A, Chernyshov A K, Ufimtsev N I, Ghildina A R, Azyazov V N, Heaven M C 2016 High Energy/Average Power Lasers and Intense Beam Applications IX San Francisco, CA, February 15–16, 2016 97290E

    [10]

    Gao J, Zuo D L, Zhao J, Li B, Yu A L, Wang X B 2016 Opt. Laser Technol. 84 48Google Scholar

    [11]

    Mikheyev P A, Han J D, Clark A, Sanderson C, Heaven M C2017 Production of Ar Metastables in A Dielectric Barrier Discharge (Vol. 10254) (SPIE) 102540X

    [12]

    Han J D, Glebov L, Venus G, Heaven M C 2013 Opt. Lett. 38 5458Google Scholar

    [13]

    Chu J Z, Huang K, Luan K P, Hu S, Zhu F, Huang C, Li G P, Liu J B, Guo J W, Liu D 2021 Chin. J. Lasers 48 0701006Google Scholar

    [14]

    Zhang Z F, Lei P, Zuo D L, Wang X B 2022 Chin. Opt. Lett. 20 031408Google Scholar

    [15]

    Chu J Z, Huang K, Gai B D, Hu S, Liu J B, Chen Y, Liu D, Guo J W 2022 J. Lumines. 247 118839Google Scholar

    [16]

    Wang R, Yang Z N, Tang H, Li L, Zhao H Z, Wang H Y, Xu X J 2022 Opt. Commun. 502 127398Google Scholar

    [17]

    Ghildina A R, Mikheyev P A, Chernyshov A K, Ufimtsev N I, Azyazov V N, Heaven M C 2017 Pressure Broadening Coefficients for the 811.5 nm Ar Line and 811.3 nm Kr Line in Rare Gases (Vol. 10254) (SPIE) 102540Y

    [18]

    Han J, Heaven M C, Moran P J, Pitz G A, Guild E M, Sanderson C R, Hokr B 2017 Opt. Lett. 42 4627Google Scholar

    [19]

    Wang R, Yang Z N, Li K, Wang H Y, Xu X J 2022 J. Appl. Phys. 131 023104Google Scholar

    [20]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2022) https://physics.nist.gov/asd/ [2023-6-8

    [21]

    Lei P, Zhang Z F, Wang X B, Zuo D L 2022 Opt. Commun. 513 128116Google Scholar

    [22]

    Belostotskiy S G, Donnelly V M, Economou D J, Sadeghi N 2009 IEEE Trans. Plasma Sci. 37 852Google Scholar

    [23]

    Miura N, Hopwood J 2011 J. Appl. Phys. 109 013304Google Scholar

    [24]

    Sun P, Zuo D, Wang X, Han J D, Heaven M C 2020 Opt. Express 28 14580Google Scholar

  • 图 1  Ar-Kr原子能级以及碰撞传能示意图, Ar(4s[3/2]2)能级与Kr(5p[3/2]2)能级能量差仅为20 cm–1

    Figure 1.  Schematic diagram of Ar-Kr atomic energy levels and collision energy transfer, and the energy difference between Ar(4s[3/2]2) energy and Kr(5p[3/2]2) energy is only 20 cm–1.

    图 2  放电装置及探测光路图

    Figure 2.  Discharge device and detection optical path diagram.

    图 3  760.2 nm光谱诊断结果 (a) 100 mbar, 1% Kr/Ar/He混合气体不同Ar含量的放电等离子体放射光谱; (b) 不同气压760.2 nm谱线峰值随Ar含量的变化

    Figure 3.  Spectral diagnosis results at 760.2 nm: (a) Emission spectra of discharge plasma with different Ar content in 100 mbar, 1% Kr/Ar/He gas mixture; (b) variation of the peak value of 760.2 nm spectral line with Ar content at different pressure.

    图 4  819.0 nm光谱诊断结果 (a) 100 mbar, 1% Kr/Ar/He混合气体不同Ar含量的放电等离子体放射光谱; (b) 不同气压819.0 nm谱线峰值随Ar含量的变化

    Figure 4.  Diagnosis Results of 819.0 nm spectra: (a) Emission spectra of discharge plasma with different Ar content in 100 mbar, 1% Kr/Ar/He gas mixture; (b) variation of the peak value of 819.0 nm spectral line with Ar content at different pressure.

    图 5  760.2 nm时间分辨光谱诊断结果 (a) 100 mbar, 1% Kr时不同氩含量原始光谱图; (b)荧光信号强度降至0.1 mV所需时间

    Figure 5.  Diagnostic results of 760.2 nm time-resolved spectra: (a) Original spectrogram of different argon content at 100 mbar, 1% Kr; (b) time required for fluorescence signal intensity to drop to 0.1 mV.

    图 6  (a) 100 mbar, 1% Kr, 4% Ar条件下原始吸收信号; (b) Voigt拟合结果

    Figure 6.  (a) Original absorption signal under condition of 100 mbar, 1% Kr, 4% Ar; (b) Voigt fitting results.

    图 7  (a) 100—200 mbar, 1% Kr/He混合气中不同Ar含量对Kr*密度影响; (b) 100—200 mbar, 1% Kr/He混合气中不同Ar含量对Kr亚稳态能级吸收线宽影响; (c) 100 mbar, 1% Kr和2% Kr含量时, Kr*粒子数密度和吸收线宽对比

    Figure 7.  (a) Effect of Ar content in 1% Kr/He mixture on Kr* density at 100–200 mbar; (b) effect of different Ar content in 100–200 mbar, 1% Kr/He mixture on the absorption linewidth of Kr metastable energy level; (c) comparison of Kr* particle number density and absorption line width at 100 mbar, 1% Kr and 2% Kr content.

    图 8  (a) 300—600 mbar不同Ar含量对1% Kr/He混合气中Kr*密度影响; (b)不同气压下Kr*密度增长比例变化

    Figure 8.  (a) Effect of different Ar content on Kr* Density in 1% Kr/He mixture at 300—600 mbar; (b) change in Kr* density growth ratio under different air pressures.

    Baidu
  • [1]

    Qi Y, Yi H Y, Huang J J, Kuang Y 2021 Laser Optoelectron. P. 58 0700003Google Scholar

    [2]

    Krupke W F 2012 Prog. Quantum Electron. 36 4Google Scholar

    [3]

    Pitz G A, Stalnaker D M, Guild E M, Oliker B Q, Moran P J, Townsend S W, Hostutler D A 2016 High Energy/ Average Power Lasers and Intense Beam Applications IX San Francisco, CA, February 15–16, 2016 972902

    [4]

    齐予, 易亨瑜, 黄吉金, 匡艳 2021 激光与光电子学进展 58 46

    Qi Y, Yi H Y, Huang J J, Kuang Y 2021 Laser Optoelectron P. 58 46

    [5]

    Han J D, Heaven M C 2012 Opt. Lett. 37 2157Google Scholar

    [6]

    Kim H, Hopwood J 2019 J. Appl. Phys. 126 163301Google Scholar

    [7]

    Mikheyev P A, Chernyshov A K, Ufimtsev N I, Vorontsova E A, Azyazov V N 2015 J. Quant. Spectrosc. Radiat. Transf. 164 1Google Scholar

    [8]

    Mikheyev P A, Chernyshov A K, Ufimtsev N I, Vorontsova E A 2015 Tunable Diode-laser Spectroscopy (TDLS) of 811.5 nm Ar Line for Ar(4s[3/2]2) Number Density Measurements in a 40 MHz RF Discharge (Vol. 9255) (SPIE) 92552W

    [9]

    Mikheyev P A, Chernyshov A K, Ufimtsev N I, Ghildina A R, Azyazov V N, Heaven M C 2016 High Energy/Average Power Lasers and Intense Beam Applications IX San Francisco, CA, February 15–16, 2016 97290E

    [10]

    Gao J, Zuo D L, Zhao J, Li B, Yu A L, Wang X B 2016 Opt. Laser Technol. 84 48Google Scholar

    [11]

    Mikheyev P A, Han J D, Clark A, Sanderson C, Heaven M C2017 Production of Ar Metastables in A Dielectric Barrier Discharge (Vol. 10254) (SPIE) 102540X

    [12]

    Han J D, Glebov L, Venus G, Heaven M C 2013 Opt. Lett. 38 5458Google Scholar

    [13]

    Chu J Z, Huang K, Luan K P, Hu S, Zhu F, Huang C, Li G P, Liu J B, Guo J W, Liu D 2021 Chin. J. Lasers 48 0701006Google Scholar

    [14]

    Zhang Z F, Lei P, Zuo D L, Wang X B 2022 Chin. Opt. Lett. 20 031408Google Scholar

    [15]

    Chu J Z, Huang K, Gai B D, Hu S, Liu J B, Chen Y, Liu D, Guo J W 2022 J. Lumines. 247 118839Google Scholar

    [16]

    Wang R, Yang Z N, Tang H, Li L, Zhao H Z, Wang H Y, Xu X J 2022 Opt. Commun. 502 127398Google Scholar

    [17]

    Ghildina A R, Mikheyev P A, Chernyshov A K, Ufimtsev N I, Azyazov V N, Heaven M C 2017 Pressure Broadening Coefficients for the 811.5 nm Ar Line and 811.3 nm Kr Line in Rare Gases (Vol. 10254) (SPIE) 102540Y

    [18]

    Han J, Heaven M C, Moran P J, Pitz G A, Guild E M, Sanderson C R, Hokr B 2017 Opt. Lett. 42 4627Google Scholar

    [19]

    Wang R, Yang Z N, Li K, Wang H Y, Xu X J 2022 J. Appl. Phys. 131 023104Google Scholar

    [20]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2022) https://physics.nist.gov/asd/ [2023-6-8

    [21]

    Lei P, Zhang Z F, Wang X B, Zuo D L 2022 Opt. Commun. 513 128116Google Scholar

    [22]

    Belostotskiy S G, Donnelly V M, Economou D J, Sadeghi N 2009 IEEE Trans. Plasma Sci. 37 852Google Scholar

    [23]

    Miura N, Hopwood J 2011 J. Appl. Phys. 109 013304Google Scholar

    [24]

    Sun P, Zuo D, Wang X, Han J D, Heaven M C 2020 Opt. Express 28 14580Google Scholar

  • [1] TIAN Wenjing, YANG Zongyu, XU Min, LONG Ting, HE Xiaoxue, KE Rui, YANG Shuosu, YU Deliang, SHI Zhongbing, GAO Zheo. Research on Rapid Analysis Model and Extrapolation Method of Neural Network in Spectral Diagnostic. Acta Physica Sinica, 2025, 74(7): . doi: 10.7498/aps.74.20241739
    [2] Huang Zhi-Qiu, Li Qi-Zheng, Zhang Meng, Peng Zhi-Min, Yang Qian-Suo. Theoretical and experimental study of inversion of spectral absorption function using experimental data of laser absorption spectrum with slow scanning and fast modulation of wavelength. Acta Physica Sinica, 2023, 72(12): 123301. doi: 10.7498/aps.72.20230371
    [3] Yuan Hong-Rui, Liu Tao, Zhu Tian-Xin, Liu Yun, Li Xiang, Chen Yang, Duan Chuan-Xi. High-resolution jet-cooled laser absorption spectra of SF6 at 10.6 μm. Acta Physica Sinica, 2023, 72(6): 063301. doi: 10.7498/aps.72.20222285
    [4] Zhao Rong, Zhou Bin, Liu Qi, Dai Ming-Lu, Wang Bu-Bin, Wang Yi-Hong. Online tomography algorithm based on laser absorption spectroscopy. Acta Physica Sinica, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [5] Liu Kun, Xiang Hong-Fu, Zhou Xiong-Feng, Xia Hao-Tian, Li Hua. Spectral diagnosis of atmospheric pressure AC argon plasma jet at constant power. Acta Physica Sinica, 2023, 72(11): 115201. doi: 10.7498/aps.72.20230307
    [6] Liu Guo-Rong, Zhu Wei-Jun, Chu Run-Tong, Wang Wei, Yuan Ping, An Ting-Ting, Wan Rui-Bin, Sun Dui-Xiong, Ma Yun-Yun, Guo Zhi-Yan. Diagnosis of lightning return stroke channel temperature according to different band spectra. Acta Physica Sinica, 2022, 71(10): 109201. doi: 10.7498/aps.71.20211673
    [7] Guan Lin-Qiang, Deng Hao, Yao Lu, Nie Wei, Xu Zhen-Yu, Li Xiang, Zang Yi-Peng, Hu Mai, Fan Xue-Li, Yang Chen-Guang, Kan Rui-Feng. Measurement of middle infrared spectroscopic parameters of carbon disulfide based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [8] Liang Yi-Han, Hu Guang-Yue, Yuan Peng, Wang Yu-Lin, Zhao Bin, Song Fa-Lun, Lu Quan-Ming, Zheng Jian. Temporal evolutions of the plasma density and temperature of laser-produced plasma expansion in an external transverse magnetic field. Acta Physica Sinica, 2015, 64(12): 125204. doi: 10.7498/aps.64.125204
    [9] Geng Hui, Liu Jian-Guo, Zhang Yu-Jun, Kan Rui-Feng, Xu Zhen-Yu, Yao Lu, Ruan Jun. Ethanol vapor measurement based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [10] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Separating the Z-pinch plasma X-ray radiation and attaining the electron temperature. Acta Physica Sinica, 2014, 63(9): 095201. doi: 10.7498/aps.63.095201
    [11] Zhang Zhi-Rong, Wu Bian, Xia Hua, Pang Tao, Wang Gao-Xuan, Sun Peng-Shuai, Dong Feng-Zhong, Wang Yu. Study on the temperature modified method for monitoring gas concentrations with tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [12] Li Qin-Lei, Fan Feng-Ying, Xiong Wei-Jia, Chen An-Ying, Li Yan. Laser frequency scale system in carbon isotopic abundance measurement. Acta Physica Sinica, 2013, 62(24): 242801. doi: 10.7498/aps.62.242801
    [13] Zhang Liang, Liu Jian-Guo, Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Xu Zhen-Yu, Chen Jun. On the methodology of measuring high-speed flows using tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(3): 034214. doi: 10.7498/aps.61.034214
    [14] Song Jun-Ling, Hong Yan-Ji, Wang Guang-Yu, Pan Hu. Two-dimensional reconstructions of gas temperature and concentration in combustion based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(24): 240702. doi: 10.7498/aps.61.240702
    [15] Zhang Shuai, Liu Wen-Qing, Zhang Yu-Jun, Ruan Jun, Kan Rui-Feng, You Kun, Yu Dian-Qiang, Dong Jin-Ting, Han Xiao-Lei. Research of quantitative remote sensing of natural gas pipeline leakage based on laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(5): 050701. doi: 10.7498/aps.61.050701
    [16] Pu Yu-Dong, Yang Jia-Min, Jin Feng-Tao, Zhang Lu, Ding Yong-Kun. Characteristics of emission spectroscopyof radiatively heated Al plasma. Acta Physica Sinica, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [17] Lai Tian-Shu, Liu Lu-Ning, Lei Liang, Shou Qian, Li Xi-Ying, Wang Jia-Hui, Lin Wei-Zhu. Electron-spin polarization and its relaxation probed by femtosecond laser absorption. Acta Physica Sinica, 2005, 54(2): 967-971. doi: 10.7498/aps.54.967
    [18] Zhou Bin, Hao Nan, Chen Li-Min. A study on the effect of Fraunhofer structure on the measurement of atmospheric pollutants with differential optical absorption spectroscopy. Acta Physica Sinica, 2005, 54(9): 4445-4450. doi: 10.7498/aps.54.4445
    [19] Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Liu Jian-Guo, Dong Feng-Zhong, Gao Shan-Hu, Wang Min, Chen Jun. Absorption measurements of ambient methane with tunable diode laser. Acta Physica Sinica, 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
    [20] LIU HONG, CHEN AI-QIU, LI BAI-WEN. CALCULATION OF l-MIXING CROSS SECTION IN THERMAL COLLISION OF RYDBERG STATE Na ATOM WITH RARE GAS. Acta Physica Sinica, 1991, 40(4): 527-532. doi: 10.7498/aps.40.527
Metrics
  • Abstract views:  3144
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  08 June 2023
  • Accepted Date:  31 July 2023
  • Available Online:  02 August 2023
  • Published Online:  05 October 2023

/

返回文章
返回
Baidu
map