Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Diffusion and separation of binary mixtures of chiral active particles driven by time-delayed feedback

Liao Jing-Jing Lin Fu-Jun

Citation:

Diffusion and separation of binary mixtures of chiral active particles driven by time-delayed feedback

Liao Jing-Jing, Lin Fu-Jun
PDF
HTML
Get Citation
  • Considering the periodic boundary conditions, a new prescription for separating binary mixtures of chiral active particles by time-delayed feedback in a two-dimensional square box is proposed. We investigate the angular velocity, the feedback intensity, the delayed time, the rotational diffusion coefficient, the self-propelled speed and the packing fraction as functions of the effective diffusion coefficient and the separation coefficient numerically by the extensive Brownian dynamics simulations. It is found that mixed chiral active particles be separated without time-delayed feedback, but the dynamics of chiral active particles are different obviously and mixed chiral particles can be separated when the time-delayed feedback is introduced. The particle configuration (mixing or demixing) is determined by the dominant factor of particles’ diffusion. We can control the extent to which the diffusion of counterclockwise (CCW) active particles is affected by the diffusion of clockwise (CW) active particles adjusting the strength and the delayed time of the feedback. The response to the feedback for different chiral particles show different behaviors under different system parameters. When the feedback intensity is strong and the delayed time is long enough, the angular velocity of counterclockwise particles is accelerated and the diffusion of which is dominated by the interactions between particles completely. However, the angular speed of clockwise particles change little and the diffusion of which is determined by its parameters and particle interactions jointly. In this case, the counterclockwise particles aggregate to form clusters easily, and the clockwise particles diffuse quickly, therefore, the mixed chirality active particles are separated. When the feedback intensity is weak and the delayed time is short, the chirality difference between different chiral particles modulated by the feedback is smaller than the former case. The diffusions of counterclockwise particles and clockwise particles are both determined by their parameters and particle interactions, and the particles are mixed. Our findings provide novel strategies for the experimental pursuit of separating mixed chiral active particles and could be applied practically in many biological circle swimmers, such as autochemotactic particles, the bacteria in an external light field and sperm cells with vortex motion.
      Corresponding author: Lin Fu-Jun, fujun012@yeah.net
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11905086, 11804131), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20192BAB212006), and the Foundation of Jiangxi Provincial Educationa Department, China (Grant Nos. GJJ191598, GJJ191599)
    [1]

    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G 2016 Rev. Mod. Phys. 88 045006Google Scholar

    [2]

    Chen C, Liu S, Shi X, Chate H, Wu Y 2017 Nature 542 210Google Scholar

    [3]

    Reichhardt C J O, Reichhardt C 2017 Annu. Rev. Condens. Matter Phys. 8 51Google Scholar

    [4]

    Reichhardt C J O, Reichhardt C 2017 Nat. Phys. 13 10Google Scholar

    [5]

    夏益祺, 谌庄琳, 郭永坤 2019 68 161101Google Scholar

    Xia Y Q, Zhan Z L, Guo Y K 2019 Acta Phys. Sin. 68 161101Google Scholar

    [6]

    张红, 宗奕吾, 杨明成, 赵坤 2019 68 134702Google Scholar

    Zhang H, Zong Y W, Yang M C, Zhao K 2019 Acta Phys. Sin. 68 134702Google Scholar

    [7]

    Vale R D, Milligan R A 2000 Science 288 88Google Scholar

    [8]

    Leptos K C, Guasto J S, Gollub J P, Pesci A I, Goldstein R E 2009 Phys. Rev. Lett. 103 198103Google Scholar

    [9]

    Howse J, Jones R, Ryan A, Gough T, Vafabakhsh R, Golestanian R 2007 Phys. Rev. Lett. 99 048102Google Scholar

    [10]

    van Teeffelen S, Löwen H 2008 Phys. Rev. E 78 020101(RGoogle Scholar

    [11]

    Tjhung E, Cates M E, Marenduzzo D 2017 Proc. Natl. Acad. Sci. 114 4631Google Scholar

    [12]

    Friedrich B M, Jülicher F 2007 Proc. Natl. Acad. Sci. 104 13256Google Scholar

    [13]

    Leonardo R D, Dell'Arciprete D, Angelani L, Iebba V 2011 Phys. Rev. Lett. 106 038101Google Scholar

    [14]

    Shenoy V B, Tambe D T, Prasad A, Theriot J A 2007 Proc. Natl. Acad. Sci. 104 8229Google Scholar

    [15]

    Von Lospichl B, Klapp S H L 2018 Phys. Rev. E 98 042605Google Scholar

    [16]

    Lopez B J, Kuwada N J, Craig E M, Long B R, Linke H 2008 Phys. Rev. Lett. 101 220601Google Scholar

    [17]

    Gernert R, Klapp S H L 2015 Phys. Rev. E 92 022132Google Scholar

    [18]

    Popli P, Ganguly S, Sengupta S 2018 Soft Matter 14 104Google Scholar

    [19]

    Yang Y, Bevan M A 2018 ACS Nano 12 10712Google Scholar

    [20]

    Blickle V, Bechinger C 2011 Nat. Phys. 8 143Google Scholar

    [21]

    Hanes R D L, Jenkins M C, Egelhaaf S U 2009 Rev. Sci. Instrum. 80 083703Google Scholar

    [22]

    Evers F, Hanes R D L, Zunke C, Capellmann R F, Bewerunge J, Dalle-Ferrier C, Jenkins M C, Ladadwa I, Heuer A, Castaneda-Priego R, Egelhaaf S U 2013 Eur. Phys. J. Spec. Top. 222 2995Google Scholar

    [23]

    Bewerunge J, Egelhaaf S U 2016 Phys. Rev. A 93 013806Google Scholar

    [24]

    Bäuerle T, Fischer A, Speck T, Bechinger C 2018 Nat. Commun. 9 3232Google Scholar

    [25]

    Jones P, Marag O, Volpe G 2015 Optical Tweezers: Principles and Applications (Cambridge: Cambridge University Press)

    [26]

    Nishizawa K, Bremerich M, Ayade H, Schmidt C F, Ariga T, Mizuno D 2017 Sci. Adv. 3 e1700318Google Scholar

    [27]

    Leyman M, Ogemark F, Wehr J, Volpe G 2018 Phys. Rev. E 98 052606Google Scholar

    [28]

    Lavergne F A, Wendehenne H, Bäuerle T, Bechinger C 2019 Science 364 70Google Scholar

    [29]

    Adler J 1966 Science 153 708Google Scholar

    [30]

    Couzin I D, Franks N R 2003 Proc. R. Soc. London, Ser. B 270 139Google Scholar

    [31]

    Jin C, Hokmabad B V, Baldwin K A, Maass C C 2018 J. Phys. Condens. Matter 30 054003Google Scholar

    [32]

    Volpe G, Gigan S, Volpe G 2014 Am. J. Phys. 82 659Google Scholar

    [33]

    Kumari S, Nunes A S, Araújo N A M, Margarida M Telo da Gama 2017 J. Chem. Phys. 147 174702Google Scholar

    [34]

    Maggi C, Lepore A, Solari J, Rizzo A, Di Leonardo R 2013 Soft Matter 9 10885Google Scholar

    [35]

    Berdakin I, Jeyaram Y, Moshchalkov V V, Venken L, Dierckx S, Vanderleyden S J, Sil-hanek A V, Condat C A, Marconi V I 2013 Phys. Rev. E 87 052702Google Scholar

    [36]

    Yang W, Misko V R, Nelissen K, Kong M, Peeters F M 2012 Soft Matter 8 5175Google Scholar

    [37]

    Weber S N, Weber C A, Frey E 2016 Phys. Rev. Lett. 116 058301Google Scholar

    [38]

    Costanzo A, Elgeti J, Auth T, Gompper G, Ripoll M 2014 EPL 107 36003Google Scholar

    [39]

    Stenhammar J, Wittkowski R, Marenduzzo D, et al. 2015 Phys. Rev. Lett. 114 018301Google Scholar

    [40]

    Ma Z, Lei Q, Ni R 2017 Soft Matter 13 8940Google Scholar

    [41]

    McCandlish S R, Baskaran A, Hagan M F 2012 Soft Matter 8 2527Google Scholar

    [42]

    Smrek J, Kremer K 2017 Phys. Rev. Lett. 118 098002Google Scholar

    [43]

    Harder J, Cacciuto A 2018 Phys. Rev. E 97 022603Google Scholar

    [44]

    Nourhani A, Crespi V H, Lammert P E 2015 Phys. Rev. Lett. 115 118101Google Scholar

    [45]

    Mijalkov M, Volpe G 2013 Soft Matter 9 6376Google Scholar

    [46]

    Scholz C, Engel M, Pöschel T 2018 Nat. Commun. 9 1Google Scholar

    [47]

    Chen Q, Ai B 2015 J. Chem. Phys. 143 104113Google Scholar

    [48]

    Ai B, Shao Z, Zhong W 2018 Soft Matter 14 4388Google Scholar

    [49]

    Wysocki A, Winkler R G, Gompper G 2016 New J. Phys. 18 123030Google Scholar

    [50]

    Dolai P, Simha A, Mishra S 2018 Soft Matter 14 6137Google Scholar

    [51]

    Ai B 2016 Sci. Rep. 6 1Google Scholar

    [52]

    Nguyen N H P, Klotsa D, Engel M, Glotzer S C 2014 Phys. Rev. Lett. 112 075701Google Scholar

    [53]

    Agrawal A, Babu S B 2018 Phys. Rev. E 97 020401(RGoogle Scholar

    [54]

    Ai B, He Y, Zhong W 2015 Soft Matter 11 3852Google Scholar

    [55]

    Reichhardt C, Reichhardt C J O 2013 Phys. Rev. E 88 042306Google Scholar

    [56]

    DiLuzio W R, Turner L, Mayer M, Garstecki P, Weibel D B, Berg H C, Whitesides G M 2005 Nature 435 1271Google Scholar

    [57]

    Shin J, Cherstvy A G, Metzler R 2014 New J. Phys. 16 053047Google Scholar

    [58]

    Di Leonardo R, Dell’Arciprete D 2011 Physical Review Letters 106 038101

    [59]

    Cẽbers A 2011 J. Magn. Magn. Mater. 323 279Google Scholar

    [60]

    Hennig D 2009 Phys. Rev. E 79 041114Google Scholar

    [61]

    Yang X, Manning M L, Marchetti M C 2014 Soft Matter 10 6477Google Scholar

    [62]

    Cates M E, Tailleur J 2015 Annu. Rev. Condens. Matter Phys. 6 219Google Scholar

  • 图 1  时间延迟反馈示意图. 当$ \tau = 0 $时, $ {{\varOmega}}(t) = K_{\rm {fb}} $; 当$ \tau\rightarrow\infty $$\theta({t}\!-\!\tau ) > \theta(t)$时, $ {{\varOmega}}(t) = 0 $; 当$ \tau\rightarrow\infty $$\theta({t}\!-\!\tau ) < \theta(t)$时, $ {{\varOmega}}(t) = 2 K_{\rm {fb}} $

    Figure 1.  Schematic diagram of time-delayed feedback. When $ \tau = 0 $, $ {{\varOmega}}(t) = K_{\rm {fb}} $; when $ \tau\rightarrow\infty $ and $ \theta({t}-\tau ) > \theta(t) $, $ {{\varOmega}}(t) = 0 $; when $ \tau\rightarrow\infty $ and $ \theta({t}-\tau ) < \theta(t) $, ${{\varOmega}}(t) = 2 K_{\rm {fb}}$.

    图 2  CCW粒子(红色)和CW粒子(蓝色)的混合物分布 (a)$K_{\rm {fb}} = 0, ~\omega = 0$; (b)$K_{\rm {fb}} = 10.0, ~ \tau = 10.0, ~\omega = 0$; (c)$K_{\rm {fb}} \!=\! 10.0, \tau \!=\! 10.0, \omega \!=\! 2.2$; (d)$K_{\rm {fb}} = 10.0,~ \tau = 10.0, ~\omega = 4.2$. 其他参数设置为$ v_0 = 2.5 $, $D_{\theta} = 0.001$, $ \phi = 0.5 $

    Figure 2.  The snapshots of mixture of CCW particles (red) and CW particles (blue): (a)$ K_{\rm {fb}} = 0, \omega = 0 $; (b)$K_{\rm {fb}} = 10.0, \tau = 10.0, \omega = 0$; (c)$ K_{\rm {fb}} = 10.0, \tau = 10.0, \omega = 2.2 $; (d)$ K_{\rm {fb}} = 10.0, \tau = 10.0, \omega = 4.2 $. The other parameters are $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, and $ \phi = 0.5 $.

    图 3  (a) CW粒子和CCW粒子的最大团簇粒子数占各自总粒子数的比例P随角速度$ \omega $的变化. 图中a, b, c, d四点的构型图分别对应图2(a), 图2(b), 图2(c), 图2(d); (b)在不同$ \omega $下, $ t = 2\times10^4 $时, 相对径向分布函数$ g_{\rm {AB}}(r) $. 图中标注的圆圈为第一个零根, 代表单种粒子的团簇尺寸. 其他参数设置为$ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \phi = 0.5 $, $ K_{\rm {fb}} = 10.0 $, $ \tau = 10.0 $

    Figure 3.  (a) The ratio of the particle number in maximum cluster of CW particles and CCW particles to the total number of particles respectively as a function of $ \omega $. The points a, b, c, d are corresponding to Fig. 2(a),Fig. 2(b),Fig. 2(c),Fig. 2(d), respectively; (b) relative radial distribution function $ g_{\rm {AB}}(r) $ for different value of $ \omega $ at $ t = 2\times10^4 $. The first non-trivial root (marked by circles) denotes the cluster size of the single particle species. The other parameters are $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \phi = 0.5 $, $ K_{\rm {fb}} = 10.0 $, and $ \tau = 10.0 $.

    图 4  (a)在不同$ K_{\rm {fb}} $$ \tau $值下, CCW粒子和CW粒子的有效扩散系数D随角频率$ \omega $的变化; (b)在不同$ K_{\rm {fb}} $$ \tau $下, 分离系数S随角频率$ \omega $的变化. 其他参数设置为$ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \phi = 0.5 $

    Figure 4.  (a) The effective diffusion coefficient D of CCW and CW particles as a function of $ \omega $ for different $ K_{\rm {fb}} $ and $ \tau $; (b) the separation coefficient S as a function of $ \omega $ for different $ K_{\rm {fb}} $ and $ \tau $. The other parameters are $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, and $ \phi = 0.5 $.

    图 10  (a)在不同填充率$ \phi $下, 分离系数S随时间t的变化; (b)在不同时间t下, $ \phi = 0.5 $时, 相对径向分布函数$ g_{\rm {AB}}(r) $. 图中标注的圆圈为第一个零根, 代表单种粒子的团簇尺寸. 其他参数设置为$ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \omega = 2.1 $, $ K_{\rm {fb}} = 10.0 $, $ \tau = 10.0 $

    Figure 10.  (a) The separation S as a function of t for different $ \phi $; (b) the relative radial distribution function $ g_{\rm {AB}}(r) $ for different t at $ \phi = 0.5 $. The first non-trivial root (marked by circles) denotes the cluster size of the single particle species. The other parameters are $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \omega = 2.1 $, $ K_{\rm {fb}} = 10.0 $, and $ \tau = 10.0 $.

    图 5  在 (a) $ \tau = 0.01 $, (b) $ \tau = 1.0 $, (c) $ \tau = 10.0 $时, CCW粒子和CW粒子的有效扩散系数D随反馈强度$ K_{\rm {fb}} $的变化; (d)在不同$ \tau $下, 分离系数S随反馈强度$ K_{\rm {fb}} $的变化. 其他参数设置为$ \omega = 2.1 $, $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \phi = 0.5 $

    Figure 5.  The effective diffusion coefficient D of CCW and CW particles as a function of $ K_{\rm {fb}} $ at (a) $ \tau = 0.01 $, (b) $ \tau = 1.0 $, and (c) $ \tau = 10.0 $; (d) the separation coefficient S as a function of $ K_{\rm {fb}} $ for different $ \tau $. The other parameters are $ \omega = 2.1 $, $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, and $ \phi = 0.5 $.

    图 6  在(a)$ K_{\rm {fb}} = 1.0 $, (b)$ K_{\rm {fb}} = 2.5 $, (c)$ K_{\rm {fb}} = 10.0 $时, CCW粒子和CW粒子的有效扩散系数D随反馈时间$ \tau $的变化; (d) 在不同$ K_{\rm {fb}} $下, 分离系数S随反馈时间$ \tau $的变化. 其他参数设置为$ \omega = 2.1 $, $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \phi = 0.5 $

    Figure 6.  The effective diffusion coefficient D of CCW and CW particles as a function of $ \tau $ at (a) $ K_{\rm {fb}} = 1.0 $, (b) $ K_{\rm {fb}} = 2.5 $, and (c) $ K_{\rm {fb}} = 10.0 $; (d) the separation coefficient S as a function of $ \tau $ for different $ K_{\rm {fb}} $. The other parameters are $ \omega = 2.1 $, $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, and $ \phi = 0.5 $.

    图 7  在(a)$ K_{\rm {fb}} = 0.0 $, (b)$ K_{\rm {fb}} = 2.5, \tau = 1.0 $, (c)$ K_{\rm {fb}} = 10.0, \tau = 10.0 $时, CCW粒子和CW粒子的有效扩散系数D随转动扩散系数$ D_{\theta} $的变化; (d) 在不同$ K_{\rm {fb}} $$ \tau $下, 分离系数S随转动扩散系数$ D_{\theta} $的变化. 其他参数设置为$ \omega = 2.1 $, $ v_0 = 2.5 $, $ \phi = 0.5 $

    Figure 7.  The effective diffusion coefficient D of CCW and CW particles as a function of $ D_{\theta} $ at (a) $ K_{\rm {fb}} = 0.0 $, (b)$K_{\rm {fb}} = 2.5, \tau = 1.0$, and (c)$ K_{\rm {fb}} = 10.0, \tau = 10.0 $; (d) the separation coefficient S as a function of $ D_{\theta} $ for different $ K_{\rm {fb}} $ and $ \tau $. The other parameters are $ \omega = 2.1 $, $ v_0 = 2.5 $, and $ \phi = 0.5 $.

    图 8  (a)在$ K_{\rm {fb}} = 10.0 $, $ \tau = 10.0 $时, 不同自驱动速度$ v_0 $下, 均方位移MSD$ = \left\langle{{{\left| {\Delta {{{r}}_i}(t)} \right|}^2}}\right\rangle $随时间t的变化; (b)在不同$ K_{\rm {fb}} $$ \tau $下, 分离系数S随自驱动速度$ v_0 $的变化. 其他参数设置为$ \omega = 2.1 $, $ D_{\theta} = 0.001 $, $ \phi = 0.5 $

    Figure 8.  (a) The mean square displacement MSD $ = \left\langle{{{\left| {\Delta {{{r}}_i}(t)} \right|}^2}}\right\rangle $ as a function of t for different $ v_0 $ at $ K_{\rm {fb}} = 10.0 $ and $ \tau = 10.0 $; (b) the separation coefficient S as a function of $ v_0 $ for different $ K_{\rm {fb}} $ and $ \tau $. The other parameters are $ \omega = 2.1 $, $ D_{\theta} = 0.001 $, and $ \phi = 0.5 $.

    图 9  (a) CCW粒子和CW粒子的有效扩散系数D随填充率$ \phi $的变化; (b) 分离系数S随填充率$ \phi $的变化. 其他参数设置为$ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \omega = 2.1 $, $ K_{\rm {fb}} = 10.0 $, $ \tau = 10.0 $

    Figure 9.  (a) The effective diffusion coefficient D of CCW and CW particles as a function of $ \phi $; (b) the separation coefficient S as a function of $ \phi $. The other parameters are $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \omega = 2.1 $, $ K_{\rm {fb}} = 10.0 $, and $ \tau = 10.0 $.

    Baidu
  • [1]

    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G 2016 Rev. Mod. Phys. 88 045006Google Scholar

    [2]

    Chen C, Liu S, Shi X, Chate H, Wu Y 2017 Nature 542 210Google Scholar

    [3]

    Reichhardt C J O, Reichhardt C 2017 Annu. Rev. Condens. Matter Phys. 8 51Google Scholar

    [4]

    Reichhardt C J O, Reichhardt C 2017 Nat. Phys. 13 10Google Scholar

    [5]

    夏益祺, 谌庄琳, 郭永坤 2019 68 161101Google Scholar

    Xia Y Q, Zhan Z L, Guo Y K 2019 Acta Phys. Sin. 68 161101Google Scholar

    [6]

    张红, 宗奕吾, 杨明成, 赵坤 2019 68 134702Google Scholar

    Zhang H, Zong Y W, Yang M C, Zhao K 2019 Acta Phys. Sin. 68 134702Google Scholar

    [7]

    Vale R D, Milligan R A 2000 Science 288 88Google Scholar

    [8]

    Leptos K C, Guasto J S, Gollub J P, Pesci A I, Goldstein R E 2009 Phys. Rev. Lett. 103 198103Google Scholar

    [9]

    Howse J, Jones R, Ryan A, Gough T, Vafabakhsh R, Golestanian R 2007 Phys. Rev. Lett. 99 048102Google Scholar

    [10]

    van Teeffelen S, Löwen H 2008 Phys. Rev. E 78 020101(RGoogle Scholar

    [11]

    Tjhung E, Cates M E, Marenduzzo D 2017 Proc. Natl. Acad. Sci. 114 4631Google Scholar

    [12]

    Friedrich B M, Jülicher F 2007 Proc. Natl. Acad. Sci. 104 13256Google Scholar

    [13]

    Leonardo R D, Dell'Arciprete D, Angelani L, Iebba V 2011 Phys. Rev. Lett. 106 038101Google Scholar

    [14]

    Shenoy V B, Tambe D T, Prasad A, Theriot J A 2007 Proc. Natl. Acad. Sci. 104 8229Google Scholar

    [15]

    Von Lospichl B, Klapp S H L 2018 Phys. Rev. E 98 042605Google Scholar

    [16]

    Lopez B J, Kuwada N J, Craig E M, Long B R, Linke H 2008 Phys. Rev. Lett. 101 220601Google Scholar

    [17]

    Gernert R, Klapp S H L 2015 Phys. Rev. E 92 022132Google Scholar

    [18]

    Popli P, Ganguly S, Sengupta S 2018 Soft Matter 14 104Google Scholar

    [19]

    Yang Y, Bevan M A 2018 ACS Nano 12 10712Google Scholar

    [20]

    Blickle V, Bechinger C 2011 Nat. Phys. 8 143Google Scholar

    [21]

    Hanes R D L, Jenkins M C, Egelhaaf S U 2009 Rev. Sci. Instrum. 80 083703Google Scholar

    [22]

    Evers F, Hanes R D L, Zunke C, Capellmann R F, Bewerunge J, Dalle-Ferrier C, Jenkins M C, Ladadwa I, Heuer A, Castaneda-Priego R, Egelhaaf S U 2013 Eur. Phys. J. Spec. Top. 222 2995Google Scholar

    [23]

    Bewerunge J, Egelhaaf S U 2016 Phys. Rev. A 93 013806Google Scholar

    [24]

    Bäuerle T, Fischer A, Speck T, Bechinger C 2018 Nat. Commun. 9 3232Google Scholar

    [25]

    Jones P, Marag O, Volpe G 2015 Optical Tweezers: Principles and Applications (Cambridge: Cambridge University Press)

    [26]

    Nishizawa K, Bremerich M, Ayade H, Schmidt C F, Ariga T, Mizuno D 2017 Sci. Adv. 3 e1700318Google Scholar

    [27]

    Leyman M, Ogemark F, Wehr J, Volpe G 2018 Phys. Rev. E 98 052606Google Scholar

    [28]

    Lavergne F A, Wendehenne H, Bäuerle T, Bechinger C 2019 Science 364 70Google Scholar

    [29]

    Adler J 1966 Science 153 708Google Scholar

    [30]

    Couzin I D, Franks N R 2003 Proc. R. Soc. London, Ser. B 270 139Google Scholar

    [31]

    Jin C, Hokmabad B V, Baldwin K A, Maass C C 2018 J. Phys. Condens. Matter 30 054003Google Scholar

    [32]

    Volpe G, Gigan S, Volpe G 2014 Am. J. Phys. 82 659Google Scholar

    [33]

    Kumari S, Nunes A S, Araújo N A M, Margarida M Telo da Gama 2017 J. Chem. Phys. 147 174702Google Scholar

    [34]

    Maggi C, Lepore A, Solari J, Rizzo A, Di Leonardo R 2013 Soft Matter 9 10885Google Scholar

    [35]

    Berdakin I, Jeyaram Y, Moshchalkov V V, Venken L, Dierckx S, Vanderleyden S J, Sil-hanek A V, Condat C A, Marconi V I 2013 Phys. Rev. E 87 052702Google Scholar

    [36]

    Yang W, Misko V R, Nelissen K, Kong M, Peeters F M 2012 Soft Matter 8 5175Google Scholar

    [37]

    Weber S N, Weber C A, Frey E 2016 Phys. Rev. Lett. 116 058301Google Scholar

    [38]

    Costanzo A, Elgeti J, Auth T, Gompper G, Ripoll M 2014 EPL 107 36003Google Scholar

    [39]

    Stenhammar J, Wittkowski R, Marenduzzo D, et al. 2015 Phys. Rev. Lett. 114 018301Google Scholar

    [40]

    Ma Z, Lei Q, Ni R 2017 Soft Matter 13 8940Google Scholar

    [41]

    McCandlish S R, Baskaran A, Hagan M F 2012 Soft Matter 8 2527Google Scholar

    [42]

    Smrek J, Kremer K 2017 Phys. Rev. Lett. 118 098002Google Scholar

    [43]

    Harder J, Cacciuto A 2018 Phys. Rev. E 97 022603Google Scholar

    [44]

    Nourhani A, Crespi V H, Lammert P E 2015 Phys. Rev. Lett. 115 118101Google Scholar

    [45]

    Mijalkov M, Volpe G 2013 Soft Matter 9 6376Google Scholar

    [46]

    Scholz C, Engel M, Pöschel T 2018 Nat. Commun. 9 1Google Scholar

    [47]

    Chen Q, Ai B 2015 J. Chem. Phys. 143 104113Google Scholar

    [48]

    Ai B, Shao Z, Zhong W 2018 Soft Matter 14 4388Google Scholar

    [49]

    Wysocki A, Winkler R G, Gompper G 2016 New J. Phys. 18 123030Google Scholar

    [50]

    Dolai P, Simha A, Mishra S 2018 Soft Matter 14 6137Google Scholar

    [51]

    Ai B 2016 Sci. Rep. 6 1Google Scholar

    [52]

    Nguyen N H P, Klotsa D, Engel M, Glotzer S C 2014 Phys. Rev. Lett. 112 075701Google Scholar

    [53]

    Agrawal A, Babu S B 2018 Phys. Rev. E 97 020401(RGoogle Scholar

    [54]

    Ai B, He Y, Zhong W 2015 Soft Matter 11 3852Google Scholar

    [55]

    Reichhardt C, Reichhardt C J O 2013 Phys. Rev. E 88 042306Google Scholar

    [56]

    DiLuzio W R, Turner L, Mayer M, Garstecki P, Weibel D B, Berg H C, Whitesides G M 2005 Nature 435 1271Google Scholar

    [57]

    Shin J, Cherstvy A G, Metzler R 2014 New J. Phys. 16 053047Google Scholar

    [58]

    Di Leonardo R, Dell’Arciprete D 2011 Physical Review Letters 106 038101

    [59]

    Cẽbers A 2011 J. Magn. Magn. Mater. 323 279Google Scholar

    [60]

    Hennig D 2009 Phys. Rev. E 79 041114Google Scholar

    [61]

    Yang X, Manning M L, Marchetti M C 2014 Soft Matter 10 6477Google Scholar

    [62]

    Cates M E, Tailleur J 2015 Annu. Rev. Condens. Matter Phys. 6 219Google Scholar

  • [1] Li Chen-Pu, Wu Wei-Xia, Zhang Li-Gang, Hu Jin-Jiang, Xie Ge-Ying, Zheng Zhi-Gang. Separation of active chiral particles with different diffusion coefficients. Acta Physica Sinica, 2024, 73(20): 200201. doi: 10.7498/aps.73.20240686
    [2] Deng Yong-He, Zhang Yu-Wen, Tan Heng-Bo, Wen Da-Dong, Gao Ming, Wu An-Ru. Surface segregation, structural features, and diffusion of NiCu bimetallic nanoparticles. Acta Physica Sinica, 2021, 70(17): 177601. doi: 10.7498/aps.70.20210336
    [3] Liu Xin-Zhuo, Wang Hua-Guang. Experimental study of diffusion behaviors of an ellipsoidal colloid in spherical colloid systems. Acta Physica Sinica, 2020, 69(23): 238201. doi: 10.7498/aps.69.20201301
    [4] Zhang Heng, Huang Yan, Shi Wang-Zhou, Zhou Xiao-Hao, Chen Xiao-Shuang. First-principles study on the diffusion dynamics of Al atoms on Si surface. Acta Physica Sinica, 2019, 68(20): 207302. doi: 10.7498/aps.68.20190783
    [5] Wang Chao, Chen Ying-Cai, Zhou Yan-Li, Luo Meng-Bo. Diffusion of diblock copolymer in periodical channels:a Monte Carlo simulation study. Acta Physica Sinica, 2017, 66(1): 018201. doi: 10.7498/aps.66.018201
    [6] Li Ya-Xiong, Liu Xian-Gui, Hu Zhi-Ming, Gao Shu-Sheng, Duan Xiang-Gang, Chang Jin. A new method for the transport mechanism coupling of shale gas slippage and diffusion. Acta Physica Sinica, 2017, 66(11): 114702. doi: 10.7498/aps.66.114702
    [7] Lu Yu-Dong, He Xiao-Qi, En Yun-Fei, Wang Xin, Zhuang Zhi-Qiang. Directional diffusion of atoms in metal strips/bump interconnects of flip chip. Acta Physica Sinica, 2010, 59(5): 3438-3444. doi: 10.7498/aps.59.3438
    [8] Chen De-Yi, Wang Zhong-Long. Diffusion in a linear oscillator driven by colored noises with white cross-correlation. Acta Physica Sinica, 2010, 59(1): 111-115. doi: 10.7498/aps.59.111
    [9] Yang Chun, Feng Yu Fang, Yu Yi. Dynamics study of the adsorption and diffusion in early growth stage of AlN/α-Al2O3(0001) films. Acta Physica Sinica, 2009, 58(5): 3553-3559. doi: 10.7498/aps.58.3553
    [10] Zhang Chuan-Yu, Gao Tao, Zhang Yun-Guang, Zhou Jing-Jing, Zhu Zheng-He, Chen Bo. Theoretical studies on the structure and He interstitial diffusion of LaNi5He compounds. Acta Physica Sinica, 2008, 57(7): 4379-4385. doi: 10.7498/aps.57.4379
    [11] Li Mei-Li, Zhang Di, Sun Hong-Ning, Fu Xing-Ye, Yao Xiu-Wei, Li Cong, Duan Yong-Ping, Yan Yuan, Mu Hong-Chen, Sun Min-Hua. Molecular dynamics study of the phase separation and diffusion in Lennard-Jones binary liquid. Acta Physica Sinica, 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [12] Wang Yong-Liang, Zhang Chao, Tang Xin, Zhang Qing-Yu. Influence of interaction between Cu adatoms on the hopping diffusion on Cu(001) surface. Acta Physica Sinica, 2006, 55(8): 4214-4220. doi: 10.7498/aps.55.4214
    [13] Cao Bo, Bao Liang-Man, Li Gong-Ping, He Shan-Hu. Diffusion and interface reaction of Cu and Si in Cu/SiO2/Si (111) systems. Acta Physica Sinica, 2006, 55(12): 6550-6555. doi: 10.7498/aps.55.6550
    [14] Yang Chun, Yu Yi, Li Yan-Rong, Liu Yong-Hua. Temperature effect on the adsorption, diffusion and initial growth mode of ZnO/Al2O3(0001) from first principles. Acta Physica Sinica, 2005, 54(12): 5907-5913. doi: 10.7498/aps.54.5907
    [15] Chang Fu-Xuan, Chen Jin, Huang Wei. Anomalous diffusion and fractional advection-diffusion equation. Acta Physica Sinica, 2005, 54(3): 1113-1117. doi: 10.7498/aps.54.1113
    [16] Huang Wei-Dong, Lin Xin, Li Tao, Wang Lin-Lin, Y. Inatomi. A time-dependent interface stability during directional solidification of a single phase alloy(Ⅱ)Comparison with experimental results. Acta Physica Sinica, 2004, 53(11): 3978-3983. doi: 10.7498/aps.53.3978
    [17] Lin Xin, Li Tao, Wang Lin-Lin, Su Yun-Peng, Huang Wei-Dong. Time-dependent interface stability during directional solidification of a single phase alloy(Ⅰ) Theoritical. Acta Physica Sinica, 2004, 53(11): 3971-3977. doi: 10.7498/aps.53.3971
    [18] Hu Xiao-Jun, Dai Yong-Bing, He Xian-Chang, Shen He-Sheng, Li Rong-Bin. . Acta Physica Sinica, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [19] . Acta Physica Sinica, 2002, 51(2): 449-455. doi: 10.7498/aps.51.449
    [20] CHEN MIN, WEI HE-LIN, LIU ZU-LI, YAO KAI-LUN. EFFECT OF LOW-ENERGY DEPOSITION PARTICLES ON INITIAL STAGE OF THIN FILM. Acta Physica Sinica, 2001, 50(12): 2446-2451. doi: 10.7498/aps.50.2446
Metrics
  • Abstract views:  6293
  • PDF Downloads:  94
  • Cited By: 0
Publishing process
  • Received Date:  07 April 2020
  • Accepted Date:  08 July 2020
  • Available Online:  09 November 2020
  • Published Online:  20 November 2020

/

返回文章
返回
Baidu
map