-
Solar-blind photodetector (PD) converts 200–280 nm ultraviolet (UV) light into electrical signals, thereby expanding application range from security communication to missile or fire alarms detections. As an emerging ultra-wide bandgap semiconductor, gallium oxide (Ga2O3) has sprung to the forefront of solar blind detection activity due to its key attributes, including suitable optical bandgap, convenient growth procedure, highly temperture/chemical/radiation tolerance, and thus becoming a promising candidate to break the current bottleneck of photomultiplier tubes. The Ga2O3-based solar blind PDs based on various architectures have been realized in the past decade, including photoconductive PDs, Schottky barrier PDs, and avalanche PDs. Till now, the metal-semiconductor-metal (MSM) structure has been widely used in developing photoconductive Ga2O3 solar-blind PDs because of its simple preparation method and large light collection area. Unfortunately, despite unremitting efforts, the performance metric of reported MSM-type Ga2O3 solar-blind PDs still lags behind the benchmark of commercial PMTs. Apparently, lack of solution to the problem has greatly hindered further research and practical applications in this field. One effective strategy for further enhancing the device performance such as detectivity, external quantum efficiency (EQE), and light-to-dark ratio heavily relies on blocking the dark current. In this work, high-quality single crystalline β-Ga2O3 with a uniform thickness of 700 nm is grown by using a metal organic chemical vapor deposition (MOCVD) technique. Then atomic layer deposition (ALD) fabricated ultrathin hafnium oxide (HfO2) films (
$ \sim $ 10 nm) are introduced as inserted insulators and passivation layers. The 30 nm/100 nm Ti/Au interdigital electrodes (length: 2800 μm, width: 200 μm, spacing: 200 μm, 4 pairs) are fabricated by sputtering on the top of the film as the Ohmic contacts. Taking advantage of its novel dielectric and insulating properties, the leakage current on Ga2O3 thin film can be effectively inhibited by the inserted ultrathin HfO2 layer, and thus further improving the performance of PDs. Compared with simple MSM structured Ga2O3 PD, the resulting metal-insulator-semiconductor (MIS) device significantly reduces dark current, and thus improving specific detectivity, enhancing light-to-dark current ratio, and increasing response speed. These findings advance a significant step toward the suppressing of dark current in MSM structured photoconductive PDs and provide great opportunities for developing high-performance weak UV signal sensing in the future.-
Keywords:
- gallium oxide /
- ultraviolet detection /
- metal-insulator-semiconductor /
- surface passivation
[1] Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar
[2] Kan H, Zheng W, Fu C, Lin R, Luo J, Huang F 2020 ACS Appl. Mater. Interfaces 12 6030Google Scholar
[3] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 68 078501Google Scholar
Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar
[4] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar
[5] Qin Y, Li L, Zhao X, Tompa G S, Dong H, Jian G, He Q, Tan P, Hou X, Zhang Z, Yu S, Sun H, Xu G, Miao X, Xue K, Long S, Liu M 2020 ACS Photonics 7 812Google Scholar
[6] Qin Y, Sun H, Long S, Tompa G S, Salagaj T, Dong H, He Q, Jian G, Liu Q, Lü H, Liu M 2019 IEEE Electron Device Lett. 40 1475Google Scholar
[7] Wang Y H, Tang Y Q, Li H R, Yang Z B, Zhang Q Y, He Z B, Huang X, Wei X H, Tang W H, Huang W, Wu Z P 2021 ACS Photonics 8 2256Google Scholar
[8] Hu D, Wang Y, Wang Y, Huan W, Dong X, Yin J 2022 Mater. Lett. 312 131653Google Scholar
[9] Liu S, Jiao S, Lu H, Nie Y, Gao S, Wang D, Wang J, Zhao L 2022 J. Alloys Compd. 890 161827Google Scholar
[10] Wang Y, Li H, Cao J, Shen J, Zhang Q, Yang Y, Dong Z, Zhou T, Zhang Y, Tang W, Wu Z 2021 ACS Nano 15 16654Google Scholar
[11] Hou X, Zhao X, Zhang Y, Zhang Z, Liu Y, Qin Y, Tan P, Chen C, Yu S, Ding M, Xu G, Hu Q, Long S 2022 Adv. Mater. 34 2106923Google Scholar
[12] Cui S, Mei Z, Zhang Y, Liang H, Du X 2017 Adv. Opt. Mater. 5 1700454Google Scholar
[13] Zhou H, Cong L, Ma J, Chen M, Song D, Wang H, Li P, Li B, Xu H, Liu Y 2020 J. Alloys Compd. 847 156536Google Scholar
[14] Han Z, Liang H, Huo W, Zhu X, Du X, Mei Z 2020 Adv. Opt. Mater. 8 1901833Google Scholar
[15] Chen C H 2013 Jpn. J. Appl. Phys. 52 08JF08Google Scholar
[16] Sheoran H, Kumar V, Singh R 2022 ACS Appl. Electron. Mater. 4 2589Google Scholar
[17] Arora K, Goel N, Kumar M, Kumar M 2018 ACS Photonics 5 2391Google Scholar
[18] Qian L X, Gu Z, Huang X, Liu H, Lü Y, Feng Z, Zhang W 2021 ACS Appl. Mater. Interfaces 13 40837Google Scholar
[19] Ma J, Lee O, Yoo G 2019 IEEE J. Electron Devices Society 7 512Google Scholar
[20] Young S J, Ji L W, Chang S J, Liang S H, Lam K T, Fang T H, Chen K J, Du X L, Xue Q K 2008 Sens. Actuators, A 141 225Google Scholar
[21] Wang W J, Shan C X, Zhu H, Ma F Y, Shen D Z, Fan X W, Choy K L 2010 J. Phys. D:Appl. Phys. 43 045102Google Scholar
[22] Seol J H, Lee G H, Hahm S H 2018 IEEE Sens. J. 18 4477Google Scholar
[23] Yin J, Liu L, Zang Y, Ying A, Hui W, Jiang S, Zhang C, Yang T, Chueh Y L, Li J, Kang J 2021 Light:Sci. Appl. 10 113Google Scholar
[24] Oshima T, Hashikawa M, Tomizawa S, Miki K, Oishi T, Sasaki K, Kuramata A 2018 Appl. Phys. Exp. 11 112202Google Scholar
[25] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 71 208501Google Scholar
Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar
[26] Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar
[27] Wang Y, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W, Wu Z 2020 ACS Appl. Mater. Interfaces 12 47714Google Scholar
[28] Dou L T, Yang Y (Micheal), You J B, Hong Z R, Chang W H, Li Ga, Yang Y 2014 Nat. Commun. 5 5404Google Scholar
[29] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明 2021 70 027801Google Scholar
Lei T, Lü W M, Lü W X, Cui B Y, Hu R, Shi W H, Zeng Z M 2021 Acta Phys. Sin. 70 027801Google Scholar
[30] 李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 71 048501Google Scholar
Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar
[31] 周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 70 178503Google Scholar
Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar
-
图 10 光电探测器在外加偏置电压下的能带结构及载流子转移过程 (a) 黑暗条件下的MSM结构探测器; (b) 254 nm紫外光照下的MSM结构探测器; (c) 黑暗条件下的MIS结构探测器; (d) 254 nm紫外光照下的MIS结构探测器. (e) 钝化前β-Ga2O3薄膜表面状态示意图; (f) 钝化后β-Ga2O3薄膜表面状态示意图
Figure 10. Band structures and carriers transfer processes of photodetectors under applied bias voltage: (a) MSM photodetector in the dark; (b) MSM photodetector under 254 nm light; (c) MIS photodetector in the dark; (d) MIS photodetector under 254 nm light. The schematic diagrams in (e) and (f) show the surface states of a β-Ga2O3 film before and after passivation, respectively.
-
[1] Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar
[2] Kan H, Zheng W, Fu C, Lin R, Luo J, Huang F 2020 ACS Appl. Mater. Interfaces 12 6030Google Scholar
[3] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 68 078501Google Scholar
Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar
[4] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar
[5] Qin Y, Li L, Zhao X, Tompa G S, Dong H, Jian G, He Q, Tan P, Hou X, Zhang Z, Yu S, Sun H, Xu G, Miao X, Xue K, Long S, Liu M 2020 ACS Photonics 7 812Google Scholar
[6] Qin Y, Sun H, Long S, Tompa G S, Salagaj T, Dong H, He Q, Jian G, Liu Q, Lü H, Liu M 2019 IEEE Electron Device Lett. 40 1475Google Scholar
[7] Wang Y H, Tang Y Q, Li H R, Yang Z B, Zhang Q Y, He Z B, Huang X, Wei X H, Tang W H, Huang W, Wu Z P 2021 ACS Photonics 8 2256Google Scholar
[8] Hu D, Wang Y, Wang Y, Huan W, Dong X, Yin J 2022 Mater. Lett. 312 131653Google Scholar
[9] Liu S, Jiao S, Lu H, Nie Y, Gao S, Wang D, Wang J, Zhao L 2022 J. Alloys Compd. 890 161827Google Scholar
[10] Wang Y, Li H, Cao J, Shen J, Zhang Q, Yang Y, Dong Z, Zhou T, Zhang Y, Tang W, Wu Z 2021 ACS Nano 15 16654Google Scholar
[11] Hou X, Zhao X, Zhang Y, Zhang Z, Liu Y, Qin Y, Tan P, Chen C, Yu S, Ding M, Xu G, Hu Q, Long S 2022 Adv. Mater. 34 2106923Google Scholar
[12] Cui S, Mei Z, Zhang Y, Liang H, Du X 2017 Adv. Opt. Mater. 5 1700454Google Scholar
[13] Zhou H, Cong L, Ma J, Chen M, Song D, Wang H, Li P, Li B, Xu H, Liu Y 2020 J. Alloys Compd. 847 156536Google Scholar
[14] Han Z, Liang H, Huo W, Zhu X, Du X, Mei Z 2020 Adv. Opt. Mater. 8 1901833Google Scholar
[15] Chen C H 2013 Jpn. J. Appl. Phys. 52 08JF08Google Scholar
[16] Sheoran H, Kumar V, Singh R 2022 ACS Appl. Electron. Mater. 4 2589Google Scholar
[17] Arora K, Goel N, Kumar M, Kumar M 2018 ACS Photonics 5 2391Google Scholar
[18] Qian L X, Gu Z, Huang X, Liu H, Lü Y, Feng Z, Zhang W 2021 ACS Appl. Mater. Interfaces 13 40837Google Scholar
[19] Ma J, Lee O, Yoo G 2019 IEEE J. Electron Devices Society 7 512Google Scholar
[20] Young S J, Ji L W, Chang S J, Liang S H, Lam K T, Fang T H, Chen K J, Du X L, Xue Q K 2008 Sens. Actuators, A 141 225Google Scholar
[21] Wang W J, Shan C X, Zhu H, Ma F Y, Shen D Z, Fan X W, Choy K L 2010 J. Phys. D:Appl. Phys. 43 045102Google Scholar
[22] Seol J H, Lee G H, Hahm S H 2018 IEEE Sens. J. 18 4477Google Scholar
[23] Yin J, Liu L, Zang Y, Ying A, Hui W, Jiang S, Zhang C, Yang T, Chueh Y L, Li J, Kang J 2021 Light:Sci. Appl. 10 113Google Scholar
[24] Oshima T, Hashikawa M, Tomizawa S, Miki K, Oishi T, Sasaki K, Kuramata A 2018 Appl. Phys. Exp. 11 112202Google Scholar
[25] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 71 208501Google Scholar
Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar
[26] Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar
[27] Wang Y, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W, Wu Z 2020 ACS Appl. Mater. Interfaces 12 47714Google Scholar
[28] Dou L T, Yang Y (Micheal), You J B, Hong Z R, Chang W H, Li Ga, Yang Y 2014 Nat. Commun. 5 5404Google Scholar
[29] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明 2021 70 027801Google Scholar
Lei T, Lü W M, Lü W X, Cui B Y, Hu R, Shi W H, Zeng Z M 2021 Acta Phys. Sin. 70 027801Google Scholar
[30] 李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 71 048501Google Scholar
Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar
[31] 周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 70 178503Google Scholar
Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar
Catalog
Metrics
- Abstract views: 4555
- PDF Downloads: 198
- Cited By: 0