搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于BiFeO3/ITO复合膜表面钝化的黑硅太阳电池性能研究

檀满林 周丹丹 符冬菊 张维丽 马清 李冬霜 陈建军 张化宇 王根平

引用本文:
Citation:

基于BiFeO3/ITO复合膜表面钝化的黑硅太阳电池性能研究

檀满林, 周丹丹, 符冬菊, 张维丽, 马清, 李冬霜, 陈建军, 张化宇, 王根平

Performance investigation of black silicon solar cells with surface passivated by BiFeO3/ITO composite film

Tan Man-Lin, Zhou Dan-Dan, Fu Dong-Ju, Zhang Wei-Li, Ma Qing, Li Dong-Shuang, Chen Jian-Jun, Zhang Hua-Yu, Wang Gen-Ping
PDF
导出引用
  • 采用金属银辅助化学刻蚀法在制绒的硅片表面刻蚀纳米孔形成微纳米双层结构,以期获得高吸收率的太阳能电池用黑硅材料.鉴于微纳米结构会在晶硅表面引入大量的载流子复合中心,利用磁控溅射技术在黑硅太阳电池表面制备了BiFeO3/ITO复合膜,并对其表面性能和优化效果进行了探索.实验制备的具有微纳米双层结构的黑硅纳米线长约180–320 nm,在300–1000 nm波长范围内入射光反射率均在5%以下.沉积BiFeO3/ITO复合薄膜后的黑硅太阳能电池反射率略有提高,但仍然具有较强的光吸收性能;采用BiFeO3/ITO复合膜的黑硅太阳能电池开路电压和短路电流密度分别由最初的0.61 V和28.42 mA/cm2提升至0.68 V和34.57 mA/cm2,相应电池的光电转化效率由13.3%上升至16.8%.电池综合性能的改善主要是因为沉积BiFeO3/ITO复合膜提高了电池光生载流子的有效分离,从而增强了黑硅太阳电池短波区域的光谱响应,表明具有自发极化性能的BiFeO3薄膜对黑硅太阳能电池的表面性能可起到较好的优化作用.
    In order to prepare black silicon material with excellent optical absorption performance for solar cell application, a micro/nano bilayer-structure is formed on the surface of textured silicon wafer by a silver assisted chemical etching method. It is found that the deeper nanoholes could form as the etching time is longer, and the surface reflectivity is reduced obviously due to the increased time of photon reflection from the nanowires. The incident light reflectivity of the prepared black silicon is significantly reduced to 2.3%, showing obviously better optical reflectance characteristics than general monocrystalline silicon wafer, especially in a wavelength range of 300-830 nm. Considering the fact that a large number of carrier recombination centers is introduced into the nanostructured crystal silicon surface, BiFeO3/ITO composite film is coated on the surface of the black silicon solar cell by magnetron sputtering process to optimize the surface defect states and improve the cell performance. The experimental results show that the lengths of the nanowires are predominantly in a range of 180-320 nm for the prepared black silicon with micro/nano double-layer structure. The reflectivity of the incident light is below 5% in a wavelength range from 300 nm to 1000 nm, and reaches a maximal value at about 700 nm. The reflectance increases slightly as BiFeO3/ITO composite film is coated on the surface of black silicon solar cell, but it is still much lower than that of general monocrystalline silicon solar cell. The open circuit voltage and short circuit current density of the black silicon solar cell increase respectively from 0.61 V to 0.68 V and from 28.42 mA/cm2 to 34.57 mA/cm2 after it has been coated with BiFeO3/ITO composite film, and the photoelectric conversion efficiency of the cell increases from 13.3% to 16.8% accordingly. The improvement in performance of black silicon solar cell is mainly due to the promotion of effective separation of photogenerated carriers, thereby enhancing the spectral response of black silicon solar cell in the whole wavelength range. This indicates that the spontaneously polarized BiFeO3 film can play a better role in improving the surface properties of black silicon solar cell. On the other hand, for the BiFeO3 film deposited on the surface of black silicon, a spontaneous polarization positive electric field could be produced, pointing from the film surface to the inside of the solar cell. This polarization electric field could also act as part of built-in electric field to contribute the photoelectric transformation of the black silicon solar cell, leading to the open circuit voltage of cell increasing from 0.61 V to 0.68 V.
      通信作者: 檀满林, tanml@tsinghua-sz.org
    • 基金项目: 深圳市科技计划项目(批准号:CXZZ2015032316092455,JCYJ20160301100700645,JCYJ20140419122040621,JCYJ20160429112213821)和广东省科技计划项目(批准号:2016B020244001)资助的课题.
      Corresponding author: Tan Man-Lin, tanml@tsinghua-sz.org
    • Funds: Project supported by the Science, Technology and Innovation Commission of Shenzhen Municipality, China (Grant Nos. CXZZ2015032316092455, JCYJ20160301100700645, JCYJ20140419122040621, JCYJ20160429112213821), and the Science & Technology Department of Guangdong Province, China (Grant No. 2016B020244001).
    [1]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D, Levi D H, Ho-Baillie A W Y 2017 Prog. Photovolt:Res. Appl. 25 3

    [2]

    Zeng X A, Ai B, Deng Y J, Shen H 2014 Acta Phys. Sin. 63 028803(in Chinese)[曾湘安, 艾斌, 邓幼俊, 沈辉2014 63 028803]

    [3]

    Tsing H H, Richard J, Wu C, Deliwala S, Mazur E 1998 Appl. Phys. Lett. 73 1673

    [4]

    Liu G Y, Tan X W, Yao J C, Wang Z, Xiong Z H 2008 Acta Phys. Sin. 57 514 (in Chinese)[刘光友, 谭兴文, 姚金才, 王振, 熊祖洪2008 57 514]

    [5]

    Savin H, Repo P, von Gastrow G, Ortega P, Calle E, Garín M, Alcubilla R 2015 Nature Nanotech. 10 624

    [6]

    Hsu C H, Wu J R, Lu Y T, Flood D J, Barron A R, Chen L C 2014 Mater. Sci. Semicond. Process. 25 2

    [7]
    [8]

    Oh J, Yuan H C, Branz H M 2012 Nature Nanotech. 7 743

    [9]

    Ziegler J, Haschke J, Käsebier T, Korte L, Sprafke A N, Wehrspohn R B 2014 Opt. Express 22 A1469

    [10]

    Koynov S, Brandt M S, Stutzmann M 2006 Appl. Phys. Lett. 88 203107

    [11]

    Liu Y P, Lai T, Li H L, Wang Y, Mei Z X, Liang H L, Li Z L, Zhang F M, Wang W J, Kuznetsov A Y, Du X L 2012 Small 8 1392

    [12]

    Lin X X, Hua X, Huang Z G, Shen W Z 2013 Nanotechnology 24 235402

    [13]

    Zhao Z C 2015 Ph. D. Dissertation (Dalian:Dalian University of Technology) (in Chinese)[赵增超2015博士学位论文(大连:大连理工大学)]

    [14]

    Brendel R, Aberle A, Cuevas A, Glunz S, Hahn G, Poortmans J, Sinton R, Weeber A 2013 Energy Procedia 38 866

    [15]

    Yang B, Liu X X, Li H 2015 Acta Phys. Sin. 64 038807(in Chinese)[杨彪, 刘向鑫, 李辉2015 64 038807]

    [16]

    Qu T L, Zhao Y G, Xie D, Shi J P, Chen Q P, Ren T L 2011 Appl. Phys. Lett. 98 173507

    [17]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63

    [18]

    Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X, Musfeldt J L 2008 Appl. Phys. Lett. 92 091905

    [19]

    Yang S Y, Martin L W, Byrnes S J, Conry T E, Basu S R, Paran D, Reichertz L, Ihlefeld J, Adamo C, Melville A, Chu Y H, Yang C H, Musfeldt J L, Schlom D G, Ager Ⅲ J W, Ramesh R 2009 Appl. Phys. Lett. 95 06290923

    [20]

    Katiyar R K, Sharma Y, Misra P, Puli V S, Sahoo S, Kumar A, Scott J F, Morell G, Weiner B R, Katiyar R S 2014 Appl. Phys. Lett. 105 172904

    [21]

    Song G L, Zhou X H, Su J, Yang H G, Wang T X, Chang F G 2012 Acta Phys. Sin. 61 177651(in Chinese)[宋桂林周晓辉, 苏健, 杨海刚, 王天兴, 常方高2012 61 177651]

    [22]

    Ji W, Yao K, Liang Y C 2010 Adv. Mater. 22 1763

    [23]

    Yang M M, Bhatnagar A, Luo Z D, Alexe M 2017 Sci. Rep. 7 43070

    [24]

    Das R R, Kim D M, Baek S H, Zavaliche F, Yang S Y, Ke X, Streiffer S K, Rzchowski M S, Ramesh R, Pan X Q, Eom C B 2006 Appl. Phys. Lett. 88 242904

    [25]

    Limin K, Wei Z, Yi S, Ouyang J 2014 Phys. Stat. Sol. a 211 565

    [26]

    Sharma S, Singh V, Kotnala R K, Dwivedi R K 2014 J . Mater. Sci. 25 1915

    [27]

    Wang Y, Jiang Q H, He H C, Nan C W 2006 Appl. Phys. Lett. 88 142503

    [28]

    Qin M, Yao K, Liang Y C 2009 Appl. Phys. Lett. 95 233

  • [1]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D, Levi D H, Ho-Baillie A W Y 2017 Prog. Photovolt:Res. Appl. 25 3

    [2]

    Zeng X A, Ai B, Deng Y J, Shen H 2014 Acta Phys. Sin. 63 028803(in Chinese)[曾湘安, 艾斌, 邓幼俊, 沈辉2014 63 028803]

    [3]

    Tsing H H, Richard J, Wu C, Deliwala S, Mazur E 1998 Appl. Phys. Lett. 73 1673

    [4]

    Liu G Y, Tan X W, Yao J C, Wang Z, Xiong Z H 2008 Acta Phys. Sin. 57 514 (in Chinese)[刘光友, 谭兴文, 姚金才, 王振, 熊祖洪2008 57 514]

    [5]

    Savin H, Repo P, von Gastrow G, Ortega P, Calle E, Garín M, Alcubilla R 2015 Nature Nanotech. 10 624

    [6]

    Hsu C H, Wu J R, Lu Y T, Flood D J, Barron A R, Chen L C 2014 Mater. Sci. Semicond. Process. 25 2

    [7]
    [8]

    Oh J, Yuan H C, Branz H M 2012 Nature Nanotech. 7 743

    [9]

    Ziegler J, Haschke J, Käsebier T, Korte L, Sprafke A N, Wehrspohn R B 2014 Opt. Express 22 A1469

    [10]

    Koynov S, Brandt M S, Stutzmann M 2006 Appl. Phys. Lett. 88 203107

    [11]

    Liu Y P, Lai T, Li H L, Wang Y, Mei Z X, Liang H L, Li Z L, Zhang F M, Wang W J, Kuznetsov A Y, Du X L 2012 Small 8 1392

    [12]

    Lin X X, Hua X, Huang Z G, Shen W Z 2013 Nanotechnology 24 235402

    [13]

    Zhao Z C 2015 Ph. D. Dissertation (Dalian:Dalian University of Technology) (in Chinese)[赵增超2015博士学位论文(大连:大连理工大学)]

    [14]

    Brendel R, Aberle A, Cuevas A, Glunz S, Hahn G, Poortmans J, Sinton R, Weeber A 2013 Energy Procedia 38 866

    [15]

    Yang B, Liu X X, Li H 2015 Acta Phys. Sin. 64 038807(in Chinese)[杨彪, 刘向鑫, 李辉2015 64 038807]

    [16]

    Qu T L, Zhao Y G, Xie D, Shi J P, Chen Q P, Ren T L 2011 Appl. Phys. Lett. 98 173507

    [17]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63

    [18]

    Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X, Musfeldt J L 2008 Appl. Phys. Lett. 92 091905

    [19]

    Yang S Y, Martin L W, Byrnes S J, Conry T E, Basu S R, Paran D, Reichertz L, Ihlefeld J, Adamo C, Melville A, Chu Y H, Yang C H, Musfeldt J L, Schlom D G, Ager Ⅲ J W, Ramesh R 2009 Appl. Phys. Lett. 95 06290923

    [20]

    Katiyar R K, Sharma Y, Misra P, Puli V S, Sahoo S, Kumar A, Scott J F, Morell G, Weiner B R, Katiyar R S 2014 Appl. Phys. Lett. 105 172904

    [21]

    Song G L, Zhou X H, Su J, Yang H G, Wang T X, Chang F G 2012 Acta Phys. Sin. 61 177651(in Chinese)[宋桂林周晓辉, 苏健, 杨海刚, 王天兴, 常方高2012 61 177651]

    [22]

    Ji W, Yao K, Liang Y C 2010 Adv. Mater. 22 1763

    [23]

    Yang M M, Bhatnagar A, Luo Z D, Alexe M 2017 Sci. Rep. 7 43070

    [24]

    Das R R, Kim D M, Baek S H, Zavaliche F, Yang S Y, Ke X, Streiffer S K, Rzchowski M S, Ramesh R, Pan X Q, Eom C B 2006 Appl. Phys. Lett. 88 242904

    [25]

    Limin K, Wei Z, Yi S, Ouyang J 2014 Phys. Stat. Sol. a 211 565

    [26]

    Sharma S, Singh V, Kotnala R K, Dwivedi R K 2014 J . Mater. Sci. 25 1915

    [27]

    Wang Y, Jiang Q H, He H C, Nan C W 2006 Appl. Phys. Lett. 88 142503

    [28]

    Qin M, Yao K, Liang Y C 2009 Appl. Phys. Lett. 95 233

  • [1] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平. 基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器.  , 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [2] 任程超, 周佳凯, 张博宇, 刘璋, 赵颖, 张晓丹, 侯国付. 基于隧穿氧化物钝化接触的高效晶体硅太阳电池的研究现状与展望.  , 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [3] 张博宇, 周佳凯, 任程超, 苏祥林, 任慧志, 赵颖, 张晓丹, 侯国付. 硅异质结太阳电池中钝化层和发射层的优化设计.  , 2021, 70(18): 188401. doi: 10.7498/aps.70.20210674
    [4] 陈俊帆, 任慧志, 侯福华, 周忠信, 任千尚, 张德坤, 魏长春, 张晓丹, 侯国付, 赵颖. 钙钛矿/硅叠层太阳电池中平面a-Si:H/c-Si异质结底电池的钝化优化及性能提高.  , 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [5] 张勇, 施毅敏, 包优赈, 喻霞, 谢忠祥, 宁锋. 表面钝化效应对GaAs纳米线电子结构性质影响的第一性原理研究.  , 2017, 66(19): 197302. doi: 10.7498/aps.66.197302
    [6] 耿超, 郑义, 张永哲, 严辉. 硅薄膜太阳电池表面纳米线阵列光学设计.  , 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [7] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究.  , 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [8] 陈培专, 侯国付, 索松, 倪牮, 张建军, 张晓丹, 赵颖. 硅基薄膜太阳电池一维光子晶体背反射器的模拟设计与制备.  , 2014, 63(12): 128801. doi: 10.7498/aps.63.128801
    [9] 梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌. 晶体硅太阳电池表面纳米线阵列减反射特性研究.  , 2013, 62(3): 037301. doi: 10.7498/aps.62.037301
    [10] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化.  , 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [11] 张祥, 刘邦武, 夏洋, 李超波, 刘杰, 沈泽南. Al2O3钝化及其在晶硅太阳电池中的应用.  , 2012, 61(18): 187303. doi: 10.7498/aps.61.187303
    [12] 何悦, 窦亚楠, 马晓光, 陈绍斌, 褚君浩. 热原子层沉积氧化铝对硅的钝化性能及热稳定性.  , 2012, 61(24): 248102. doi: 10.7498/aps.61.248102
    [13] 周春兰, 励旭东, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁. 氧化随机织构硅表面对单晶硅太阳电池性能的影响研究.  , 2011, 60(3): 038201. doi: 10.7498/aps.60.038201
    [14] 张晓丹, 孙福和, 许盛之, 王光红, 魏长春, 孙建, 侯国付, 耿新华, 熊绍珍, 赵颖. 单室沉积p-i-n型微晶硅薄膜太阳电池性能优化的研究.  , 2010, 59(2): 1344-1348. doi: 10.7498/aps.59.1344
    [15] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究.  , 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [16] 赵 雷, 周春兰, 李海玲, 刁宏伟, 王文静. a-Si(n)/c-Si(p)异质结太阳电池薄膜硅背场的模拟优化.  , 2008, 57(5): 3212-3218. doi: 10.7498/aps.57.3212
    [17] 贺剑雄, 郑家贵, 李 卫, 冯良桓, 蔡 伟, 蔡亚平, 张静全, 黎 兵, 雷 智, 武莉莉, 王文武. CdTe薄膜太阳电池背接触的研究.  , 2007, 56(9): 5548-5553. doi: 10.7498/aps.56.5548
    [18] 张晓丹, 赵 颖, 高艳涛, 陈 飞, 朱 锋, 魏长春, 孙 建, 耿新华, 熊绍珍. 提高微晶硅薄膜太阳电池效率的研究.  , 2006, 55(12): 6697-6700. doi: 10.7498/aps.55.6697
    [19] 李谷波, 张甫龙, 陈华杰, 范洪雷, 俞鸣人, 侯晓远. 发光多孔硅的表面氮钝化.  , 1996, 45(7): 1232-1238. doi: 10.7498/aps.45.1232
    [20] 夏义本, 安其霖, 居建华, 史伟民, 王鸿. α-C:H薄膜及其在硅太阳电池上作增透膜的研究.  , 1993, 42(1): 46-50. doi: 10.7498/aps.42.46
计量
  • 文章访问数:  6163
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-17
  • 修回日期:  2017-05-25
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map