-
利用脉冲激光入射技术研究100级0.18 m部分耗尽绝缘体上硅互补金属氧化物半导体反相器链的单粒子瞬态效应, 分析了激光入射器件类型及入射位置对单粒子瞬态脉冲传输特性的影响. 实验结果表明, 单粒子瞬态脉冲在反相器链中的传输与激光入射位置有关, 当激光入射第100级到第2级的n型金属-氧化物-半导体器件, 得到的脉冲宽度从287.4 ps增加到427.5 ps; 当激光入射第99级到第1级的p型金属-氧化物-半导体器件, 得到的脉冲宽度从150.5 ps增加到295.9 ps. 激光入射点靠近输出则得到的瞬态波形窄; 靠近输入则得到的瞬态波形较宽, 单粒子瞬态脉冲随着反相器链的传输而展宽. 入射器件的类型对单粒子瞬态脉冲展宽无影响. 通过理论分析得到, 部分耗尽绝缘体上硅器件浮体效应导致的阈值电压迟滞是反相器链单粒子瞬态脉冲展宽的主要原因. 而示波器观察到的与预期结果幅值相反的正输出脉冲, 是输出节点电容充放电的结果.
-
关键词:
- 单粒子瞬态 /
- 脉冲激光 /
- 部分耗尽绝缘体上硅 /
- 传输导致的脉冲展宽效应
Single event transients (SETs) in a 100 series 0.18 m partially- depleted silicon-on-insulator (PDSOI) complementary metal oxide semiconductor (CMOS) inverter chain are studied by using pulsed laser. In this paper, effects of struck transistor type and struck locations on the threshold laser energy and the pulse width of SETs are investigated. Results show that the threshold laser energies at different locations are similar, but the threshold laser energies of n-channel metal-oxide-semiconductor (NMOS) transistors are much smaller than that of p-channel metal-oxide-semiconductor (PMOS) transistors. The SET pulse width of n-channel metal-oxide-semiconductor field-effect transistor (NMOSFET) is 427.5 ps as measured at the output terminal when the 2nd stage is irradiated, and 287.4 ps when the 100th stage is irradiated; the SET pulse width of p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET) is 295.9 ps as measured at the output terminal when the 1st stage is irradiated, and 150.5 ps when the 99th stage is irradiated. Both broadening rates are about 1.4 ps/stage. When the struck locations are close to the output terminal of the chain, the SET pulse is narrowed; however, when the struck nodes are close to the input terminal, the SET pulse is broadened. SET pulses are progressively broadened up when propagating is along inverter chains. A similar broadening rate in neither NMOSFET nor PMOSFET, indicates that the SET pulse broadening effect is caused by propagation, independent of the type of struck transistors. Through analysis, the charge of floating body-induced threshold voltage hysteresis in PDSOI transistors is the main cause of pulse broadening. The positive SET pulse observed on the oscilloscope, contrary to the expectation, is due to charging and discharging of the output node capacitor. Also, the observed sub-rail-to-rail swings of the SET pulses are due to the voltage division between the internal resistance of the oscilloscope and the resistance of the PMOS transistor.-
Keywords:
- single event transients /
- pulsed laser /
- partially-depleted silicon-on-insulator /
- propagation-induced pulse broadening
[1] Bi J S, Liu G, Luo J J, Han Z S 2013 Acta Phys. Sin. 62 208501 (in Chinese) [毕津顺, 刘刚, 罗家俊, 韩郑生 2013 62 208501]
[2] Bi J S, Zeng C B, Gao L C, Liu G, Luo J J, Han Z S 2014 Chin. Phys. B 23 088505
[3] Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501 (in Chinese) [张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 62 048501]
[4] Buchner S, Baze M, Brown D, McMorrow D, Melinger J 1997 IEEE Trans. Nucl. Sci. 44 2209
[5] Mavis D G, Eaton P H 2000 Military and Aerospace Applications of Programmable Devices and Technologies Conference Maryland, USA, September 26-28, 2000 p26
[6] Ladbury R L, Benedetto J, McMorrow D, Buchner S P, Label K A, Berg M D, Kim H S, Sanders A B, Friendlich M R, Phan A 2009 IEEE Trans. Nucl. Sci. 56 3334
[7] Schwank J R, Shaneyfelt M R, McMorrow D, Ferlet-Cavrois V, Dodd P E, Heidel D F, Marshall P W, Pellish J A, Label K A, Rodbell K P, Hakey M, Flores R S, Swanson S E 2010 IEEE Trans. Nucl. Sci. 57 1827
[8] Ferlet-Cavrois V, Paillet P, McMorrow D, Torres A, Gaillardin M, Melinger J S, Knudson A R, Campbell A B, Schwank J R, Vizkelethy G, Shaneyfelt M R, Hirose K, Faynot O, Jahan C, Tosti L 2005 IEEE Trans. Nucl. Sci. 52 2104
[9] Gouker P, Brandt J, Wyatt P, Tyrrell B, Soares A, Knecht J, Keast C, McMorrow D, Narasimhan B, Gadlage M, Bhuva B 2008 IEEE Trans. Nucl. Sci. 55 2854
[10] Richter A K, Arimura I 1987 IEEE Trans. Nucl. Sci. 34 1234
[11] Ferlet-Cavrois V, Massengill L W, Gouker P 2013 IEEE Trans Nucl. Sci. 60 1767
[12] Massengill L W, Tuinenga P W 2008 IEEE Trans. Nucl. Sci. 55 2861
[13] Ferlet-Cavrois V, Paillet P, McMorrow D, Fel N, Baggio J, Girard S, Duhamel O, Melinger J S, Gaillardin M, Schwank J R, Dodd P E, Shaneyfelt M R, Felix J A 2007 IEEE Trans. Nucl. Sci. 54 2338
[14] Ferlet-Cavrois V, Pouget V, McMorrow D, Schwank J R, Fel N, Essely F, Flores R S, Paillet P, Gaillardin M, Kobayashi D, Melinger J S, Duhamel O, Dodd P E, Shaneyfelt M R 2008 IEEE Trans.Nucl. Sci. 55 2842
[15] Gouker P, Brandt J, Wyatt P, Tyrrell B, Soares A, Knecht J, Keast C, McMorrow D, Narasimham B, Gadlage M, Bhuva B 2008 IEEE Trans. Nucl. Sci. 55 2854
[16] Burns J R 1964 RCA Rev. XXV 627
[17] Kayssi A I, Sakallah K A, Burks T M1992 IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 39 42
[18] Casey M C, Amusan O A, Nation S A, Loveless T D, Balasubramanian A, Bhuva B L, Reed R A, McMorrow D, Weller R A, Alles M L, Massengill L W, Melinger J S, Narasimham B 2008 IEEE Trans. Nucl. Sci. 55 3342
[19] Wirth G, Kastensmidt F L, Ribeiro I 2008 IEEE Trans. Nucl. Sci. 55 2928
-
[1] Bi J S, Liu G, Luo J J, Han Z S 2013 Acta Phys. Sin. 62 208501 (in Chinese) [毕津顺, 刘刚, 罗家俊, 韩郑生 2013 62 208501]
[2] Bi J S, Zeng C B, Gao L C, Liu G, Luo J J, Han Z S 2014 Chin. Phys. B 23 088505
[3] Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501 (in Chinese) [张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 62 048501]
[4] Buchner S, Baze M, Brown D, McMorrow D, Melinger J 1997 IEEE Trans. Nucl. Sci. 44 2209
[5] Mavis D G, Eaton P H 2000 Military and Aerospace Applications of Programmable Devices and Technologies Conference Maryland, USA, September 26-28, 2000 p26
[6] Ladbury R L, Benedetto J, McMorrow D, Buchner S P, Label K A, Berg M D, Kim H S, Sanders A B, Friendlich M R, Phan A 2009 IEEE Trans. Nucl. Sci. 56 3334
[7] Schwank J R, Shaneyfelt M R, McMorrow D, Ferlet-Cavrois V, Dodd P E, Heidel D F, Marshall P W, Pellish J A, Label K A, Rodbell K P, Hakey M, Flores R S, Swanson S E 2010 IEEE Trans. Nucl. Sci. 57 1827
[8] Ferlet-Cavrois V, Paillet P, McMorrow D, Torres A, Gaillardin M, Melinger J S, Knudson A R, Campbell A B, Schwank J R, Vizkelethy G, Shaneyfelt M R, Hirose K, Faynot O, Jahan C, Tosti L 2005 IEEE Trans. Nucl. Sci. 52 2104
[9] Gouker P, Brandt J, Wyatt P, Tyrrell B, Soares A, Knecht J, Keast C, McMorrow D, Narasimhan B, Gadlage M, Bhuva B 2008 IEEE Trans. Nucl. Sci. 55 2854
[10] Richter A K, Arimura I 1987 IEEE Trans. Nucl. Sci. 34 1234
[11] Ferlet-Cavrois V, Massengill L W, Gouker P 2013 IEEE Trans Nucl. Sci. 60 1767
[12] Massengill L W, Tuinenga P W 2008 IEEE Trans. Nucl. Sci. 55 2861
[13] Ferlet-Cavrois V, Paillet P, McMorrow D, Fel N, Baggio J, Girard S, Duhamel O, Melinger J S, Gaillardin M, Schwank J R, Dodd P E, Shaneyfelt M R, Felix J A 2007 IEEE Trans. Nucl. Sci. 54 2338
[14] Ferlet-Cavrois V, Pouget V, McMorrow D, Schwank J R, Fel N, Essely F, Flores R S, Paillet P, Gaillardin M, Kobayashi D, Melinger J S, Duhamel O, Dodd P E, Shaneyfelt M R 2008 IEEE Trans.Nucl. Sci. 55 2842
[15] Gouker P, Brandt J, Wyatt P, Tyrrell B, Soares A, Knecht J, Keast C, McMorrow D, Narasimham B, Gadlage M, Bhuva B 2008 IEEE Trans. Nucl. Sci. 55 2854
[16] Burns J R 1964 RCA Rev. XXV 627
[17] Kayssi A I, Sakallah K A, Burks T M1992 IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 39 42
[18] Casey M C, Amusan O A, Nation S A, Loveless T D, Balasubramanian A, Bhuva B L, Reed R A, McMorrow D, Weller R A, Alles M L, Massengill L W, Melinger J S, Narasimham B 2008 IEEE Trans. Nucl. Sci. 55 3342
[19] Wirth G, Kastensmidt F L, Ribeiro I 2008 IEEE Trans. Nucl. Sci. 55 2928
计量
- 文章访问数: 6229
- PDF下载量: 170
- 被引次数: 0