搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氩气空心阴极放电复杂动力学过程的模拟研究

何寿杰 周佳 渠宇霄 张宝铭 张雅 李庆

引用本文:
Citation:

氩气空心阴极放电复杂动力学过程的模拟研究

何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆

Simulation on complex dynamics of hollow cathode discharge in argon

He Shou-Jie, Zhou Jia, Qu Yu-Xiao, Zhang Bao-Ming, Zhang Ya, Li Qing
PDF
HTML
导出引用
  • 利用流体模型模拟研究了氩气空心阴极放电的动力学过程. 数值模型考虑了直接基态电离、基态激发、分步电离、潘宁电离、解激发、两体碰撞、三体碰撞、辐射跃迁、弹性碰撞和复合反应等31个反应过程. 计算得到了电子密度, Ar+密度, 激发态氩原子Ar4s、Ar4p、Ar3d能级的密度, 电势和电场强度等的分布特性. 同时模拟得到了不同反应机制对电子、激发态氩原子Ar4s、Ar4p的产生和消耗机理的影响. 结果表明, 在本模拟条件下存在明显的空心阴极效应, 激发态氩原子Ar4s的密度大大高于电子密度. 激发态氩原子Ar4s参与的潘宁电离2Ar4s → Ar+ + Ar + e和分步电离对新电子的产生和电子能量的平衡具有重要贡献, 特别是以往模拟中通常被忽略的产生Ar2+的潘宁电离反应2Ar4s → Ar2+ + e同样对电子的产生具有重要影响. 激发态氩原子密度的空间分布是放电过程中各种粒子生成和消耗相互平衡的结果. 本模型所包含的反应中, 激发态氩原子Ar4p退激发到Ar4s能级的辐射反应Ar4p → Ar4s + hν是Ar4s能级产生的主要来源, 同时也是激发态氩原子Ar4p消耗的主要途径. 电子碰撞Ar4s激发到Ar4p能级的反应 Ar4s + e → Ar4p + e是激发态氩原子Ar4s消耗的主要途径, 也是产生激发态氩原子Ar4p的主要途径. 模拟结果同时表明, 利用激发态氩原子Ar4p能级的分布特性能够更好地反映空心阴极放电中的光学特性.
    In this paper, the dynamics of hollow cathode discharge in argon is simulated by fluid model. In the numerical model considered are 31 reaction processes, including direct ground state ionization, ground state excitation, stepwise ionization, Penning ionization, de-excitation, two-body collision, three-body collision, radiation transition, elastic collision, and electron-ion recombination reaction. The electron density, Ar+ density, Ar4s, Ar4p, Ar3d particle density, electric potential and electric field intensity are calculated. At the same time, the contributions of different reaction mechanisms for the generation and consumption of electron, Ar4s and Ar4p are simulated. The results indicate that hollow cathode effect exists in the discharge, and the Ar4s density is much higher than electron density. The penning ionization 2Ar4s → Ar+ + Ar+ + e and stepwise ionization involving Ar4s make important contributions to the generation of new electrons and the balance of electron energy. In particular, the penning ionization reaction 2Ar4s → Ar2+ + e, which is generally ignored in previous simulation, also has an significant influence on electron generation. The spatial distribution of excited state argon atomic density is the result of the balance between the formation and consumption of various particles during discharge. Radiation reaction Ar4p → Ar4s + is the main source of Ar4s generation and the main way to consume Ar4p. Ar4s + e →Ar4p + e is the main way of Ar4s consumption and Ar4p production. The simulation results also show that the Ar4p density distribution can better reflect the optical characteristics in the hollow cathode discharge.
      通信作者: 何寿杰, heshouj@hbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11205046, 51777051)、河北省自然科学基金(批准号: A2016201025)和河北大学研究生创新资助项目(批准号: hbu2019ss078)资助的课题.
      Corresponding author: He Shou-Jie, heshouj@hbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11205046, 51777051), the Science Foundation of Hebei Province, China (Grant No. A2016201025), and the Post-Graduate’s Innovation Fund Project of Hebei University, China (Grant No. hbu2019ss078).
    [1]

    欧阳吉庭, 张宇, 秦宇 2016 高电压技术 42 673Google Scholar

    Ouyang J T, Zhang Y, Qin Y 2016 High Volt. Eng. 42 673Google Scholar

    [2]

    Hou X Y, Fu Y Y, Wang H, Zou X B, Luo H Y, Wang X X 2017 Phys. Plasma 24 083506Google Scholar

    [3]

    Fu Y Y, Verboncoeur J P, Christlieb A J 2017 Phys. Plasmas 24 103514Google Scholar

    [4]

    Baguer N, Bogaerts A, Donko Z, Gijbels R, Sadeghi N 2005 J. Appl. Phys. 97 123305Google Scholar

    [5]

    Ferreira N P, Strauss J A, Human H G C 1982 Spectrochimica Acta Part B 37 273Google Scholar

    [6]

    Slevin P J, Harrison W W 1975 Appl. Spectrosc. Rev. 10 201Google Scholar

    [7]

    Roberto M, Smith H B, Verboncoeur J P 2003 IEEE Trans. Plasma- Sci. 31 1292Google Scholar

    [8]

    Wiese W L, Braulk J W, Danzmann K, Kock M 1989 Phys. Rev. A 39 2461Google Scholar

    [9]

    Miclea M, Kunze K, Heitmann U, Florek S, Franzke J, Niemax K 2005 J. Phys. D: Appl. Phys. 38 1709Google Scholar

    [10]

    Penache C, Miclea M, Bräuning-Demian A, Hohn O, Schössler S, T Jahnke T, Niemax K, Schmidt-Böcking H 2002 Plasma Sources Sci. Technol. 11 476Google Scholar

    [11]

    张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊 2012 24 245205Google Scholar

    Zhang Z H, Zhang G J, Shao X J, Chang Z S, Peng Z Y, Xu H 2012 Acta Phys. Sin. 24 245205Google Scholar

    [12]

    Lazzaroni C, Chabert P 2016 Plasma Sources Sci. Technol. 25 065015Google Scholar

    [13]

    Eggarter E 1975 J. Chem. Phys. 62 833Google Scholar

    [14]

    Eduardo C M, Moisan M 2010 Spectrochimica Acta B 65 199Google Scholar

    [15]

    Lymberopoulos D P, Economou D J 1993 J. Appl. Phys. 73 3668Google Scholar

    [16]

    Shon J W, Kushner M J 1994 J. Appl. Phys. 75 1883Google Scholar

    [17]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [18]

    Li Z, Zhao Z, Li X H 2012 Phys. Plasma 19 033510Google Scholar

    [19]

    Epstein I L, Gavrilovic M, Jovicevic S, Konjevic N, Lebedev Y A, Tatarinov A V 2014 Eur. Phys. J. D 68 334Google Scholar

    [20]

    Shkurenkov I A, Mankelevich Y A, Rakhimova T V 2009 Phys. Rev. E 79 046406Google Scholar

    [21]

    Moravej M, Yang X, Barankin M, Penelon J, Babayan S E, Hicks R F 2006 Plasma Source Sci. Tech. 15 204Google Scholar

    [22]

    Annemie B, Renaat G, Wim G 1999 Jpn. J. Appl. Phys. 38 4404Google Scholar

    [23]

    夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强 2011 60 015201Google Scholar

    Xia G Q, Xue W H, Chen M L, Zhu Y, Zhu G Q 2011 Acta Phys. Sin. 60 015201Google Scholar

    [24]

    何寿杰, 张钊, 赵雪娜, 李庆 2017 66 055101Google Scholar

    He S J, Zhang Z, Zhao Xue N, Li Q 2017 Acta Phys. Sin. 66 055101Google Scholar

    [25]

    付洋洋, 罗海云, 邹晓兵, 王强, 王新新 2014 63 095206Google Scholar

    Fu Y Y, Luo H Y, Zou X B, Wang Q, Wang X X 2014 Acta Phys. Sin. 63 095206Google Scholar

    [26]

    Fu Y Y, Verboncoeur J P, Christlieb A J, Wang X X 2017 Phys. Plasmas 24 083516Google Scholar

    [27]

    Hagelaar G J, Hoog F J, Kroesen G M 2000 Phys. Rev. E 62 1452

    [28]

    徐学基, 诸定昌 1996 气体放电物理 (上海: 复旦大学出版社)

    Xue X J, Zhu D C 1996 Physics of Gas Discharge (Shanghai: Fudan University Press) (in Chinese)

    [29]

    Fu Y Y, Krek J, Parsry G M, Verboncoeur J P 2018 Phys. Plasma 25 033505Google Scholar

    [30]

    Bogaerts A, Guenard R D, Smith B W 1997 Spectrochimica Acta Part B 52 219Google Scholar

    [31]

    Uzelac N I, Leis F 1992 Spectrochim. Acta B 47 877Google Scholar

    [32]

    Strauss J A, Ferreira N P, Human H G C 1982 Spectrochim Acta B 37 273

    [33]

    Bogaerts A, Gijbels R 1995 Phys. Rev. A 52 3743Google Scholar

    [34]

    Bánó G, Donkó Z 2012 Plasma Sources Sci. Technol. 21 035011Google Scholar

    [35]

    Bogaerts A, Gijbels R 2002 J. Appl. Phys. 92 6408Google Scholar

    [36]

    Kutasi K, Donkó Z 2000 J. Phys. D: Appl. Phys. 33 1081Google Scholar

    [37]

    Bogaerts A, Gijbels R, Vlcek J 1998 Spectrochimica Acta Part B 53 1517Google Scholar

  • 图 1  圆筒形空心阴极放电单元截面图

    Fig. 1.  Schematic of cylindrical hollow cathode discharge.

    图 2  电势分布图

    Fig. 2.  Distribution of electric potential.

    图 3  带电粒子密度分布图 (a) 电子; (b) Ar+

    Fig. 3.  Distribution of charged particle density: (a) Electron; (b) Ar+.

    图 4  激发态原子密度分布图 (a) Ar4s; (b) Ar4p; (c) Ar3d

    Fig. 4.  Distribution of excited state atoms: (a) Ar4s; (b) Ar4p; (c) Ar3d.

    图 5  不同电离速率分布图 (a) G1基态电离; (b) G7潘宁电离; (c) G10潘宁电离; (d) G5分步电离

    Fig. 5.  Different ionization rates: (a) G1 ground state ionization; (b) G7 Penning ionization; (c) G10 Penning ionization; (d) G5 stepwise ionization

    图 6  不同电离速率一维径向分布图(x = 1.2 mm)

    Fig. 6.  Radial distribution of different ionizations at x = 1.2 mm

    图 7  平均电子能量和电子密度一维径向分布图(x = 1.2 mm)

    Fig. 7.  Radial distribution of averaged electron energy and electron density at x = 1.2 mm.

    图 8  氩原子Ar4s能级生成速率 (a) G2, 直接激发; (b) G20, 氩原子Ar4p能级辐射跃迁

    Fig. 8.  Production rate of Ar4s: (a) G2, direct excitation; (b) G20, radiation transition from Ar4p.

    图 9  生成4s能级的径向分布图

    Fig. 9.  Radial production rate of Ar4s.

    图 10  消耗Ar4s能级的反应速率 (a) G17, Ar4s + e → Ar3d + e; (b) G18, Ar4s + e → Ar4p + e

    Fig. 10.  The Ar4s consuming rates of different reactions: (a) G17, Ar4s + e → Ar3d + e; (b) G18, Ar4s + e → Ar4p + e.

    图 11  消耗Ar4s能级的反应速率一维分布图

    Fig. 11.  Radial distribution of the Ar4s consuming rates.

    图 12  激发态氩原子Ar4p生成速率 (a) G3, Ar + e → Ar4p + e; (b) G21, Ar3d → Ar4p

    Fig. 12.  The Ar4p production rates of different reactions: (a) G3, Ar + e → Ar4p + e; (b) G21, Ar3d → Ar4p.

    图 13  Ar4p生成速率的径向分布图

    Fig. 13.  Radial distribution of the production rates of Ar4p.

    图 14  消耗Ar4p能级的反应速率一维分布图

    Fig. 14.  Radial distribution of the Ar4p consuming rates.

    表 1  放电反应类型

    Table 1.  Discharge reactions in the model.

    反应
    标号
    反应方程反应
    标号
    反应方程
    G1Ar + e → Ar+ + 2e[12]G17Ar4s + e → Ar3d + e[16]
    G2Ar + e → Ar4s + e[13]G18Ar4s + e → Ar4p + e[12]
    G3Ar + e → Ar4p + e[13]G19Ar4p + e → Ar4s + e[12]
    G4Ar + e → Ar3d + e[13]G20Ar4p → Ar4s + [17]
    G5Ar4s + e → Ar+ + 2e[14]G21Ar3d → Ar4p[16]
    G6Ar4p + e → Ar+ + 2e[14]G22Ar+ + 2e → Ar + e[14]
    G72Ar4s → Ar+ + Ar + e[15]G23Ar+ + e → Ar4s[12]
    G82Ar4p → Ar+ + Ar + e[16]G24Ar+ + 2e → Ar4s + e[12]
    G92Ar4s → Ar2+ + e[17]G25Ar2+ + e → 2Ar[19]
    G10Ar4s + Ar → 2Ar[18]G26Ar2+ + e → Ar+ + Ar + e[20]
    G11Ar4s + 2Ar → 3Ar[18]G27Ar2+ + e → Ar4s + Ar[16]
    G122Ar + Ar+ → Ar2+ + Arr[16]G28Ar2+ + e → 2Ar4s[21]
    G13Ar4s + 2Ar → Ar2 + Ar[15]G29Ar2+ + e → Ar4p + Ar[16]
    G14Ar4s + e → Ar + e[12]G30Ar2+ + e → Ar3d + Ar[16]
    G15Ar4s → Ar +[12]G31Ar + e → Ar + e[22]
    G16Ar4p +e → Ar + e[12]
    下载: 导出CSV

    表 2  不同电离反应速率的平均值

    Table 2.  Average values of the different ionization rates in the discharge region.

    反应标号反应方程速率平均值/cm–3·s–1
    G1Ar + e → Ar+ + 2e2.5 × 1017
    G5Ar4s + e → Ar+ + 2e2.6 × 1016
    G6Ar4p + e → Ar+ + 2e1.1 × 1015
    G72Ar4s → Ar+ + Ar + e3.9 × 1016
    G82Ar4p → Ar+ + Ar + e2.9 × 1012
    G102Ar4s → Ar2+ + e3.8 × 1016
    下载: 导出CSV

    表 3  Ar4s生成速率平均值

    Table 3.  Average values of the different production rates of Ar4s in the discharge region.

    反应标号反应方程源项平均值/cm–3·s–1
    G2Ar + e → Ar4s + e1.6 × 1017
    G19Ar4p + e → Ar4s + e9.1 × 1015
    G20Ar4p → Ar4s + 11.8 × 1017
    G24Ar+ + 2e → Ar4s + e55.3
    G23Ar + e → Ar4s4.4 × 1012
    G27Ar2+ + e → Ar4s + Ar4.3 × 1015
    G28Ar2+ + e → 2Ar4s3.9 × 1014
    下载: 导出CSV

    表 4  消耗Ar4s的不同反应速率的平均值

    Table 4.  Average values of the different consuming rates of Ar4s in the discharge region.

    反应标号反应方程源项平均值/cm–3·s–1
    G5Ar4s + e → Ar+ + 2e2.6 × 1016
    G72Ar4s → Ar+ +Ar + e7.9 × 1016
    G9Ar4s + Ar → 2Ar3.0 × 1015
    G102Ar4s → Ar2+ + e7.6 × 1016
    G11Ar4s + 2Ar → 3Ar4.5 × 1015
    G13Ar4s + 2Ar → Ar2 + Ar3.5 × 1016
    G14Ar4s + e → Ar + e1.2 × 1015
    G15Ar4s → Ar + 1.9 × 1017
    G17Ar4s + e → Ar3d + e1.2 × 1017
    G18Ar4s + e → Ar4p + e8.2 × 1017
    下载: 导出CSV

    表 5  Ar4p生成速率平均值

    Table 5.  Average values of the different production rates of Ar4p in the discharge region.

    反应标号反应方程源项平均值/cm–3·s–1
    G3Ar + e → Ar4p + e2.2 × 1017
    G18Ar4s + e → Ar4p + e8.2 × 1017
    G21Ar3d → Ar4p1.4 × 1017
    G29Ar2+ + e → Ar4p + Ar4.3 × 1014
    下载: 导出CSV

    表 6  消耗Ar4p的不同反应速率的平均值

    Table 6.  Average values of the different consuming rates of Ar4p in the discharge region

    反应标号反应方程源项平均值/cm–3·s–1
    G6Ar4p + e→Ar+ + 2e1.1 × 1015
    G82Ar4p→Ar+ + Ar + e5.8 × 1012
    G16Ar4p +e→Ar + e1.3 × 1013
    G19Ar4p + e→Ar4s + e9.1 × 1015
    G20Ar4p→Ar4s + 11.8 × 1017
    下载: 导出CSV
    Baidu
  • [1]

    欧阳吉庭, 张宇, 秦宇 2016 高电压技术 42 673Google Scholar

    Ouyang J T, Zhang Y, Qin Y 2016 High Volt. Eng. 42 673Google Scholar

    [2]

    Hou X Y, Fu Y Y, Wang H, Zou X B, Luo H Y, Wang X X 2017 Phys. Plasma 24 083506Google Scholar

    [3]

    Fu Y Y, Verboncoeur J P, Christlieb A J 2017 Phys. Plasmas 24 103514Google Scholar

    [4]

    Baguer N, Bogaerts A, Donko Z, Gijbels R, Sadeghi N 2005 J. Appl. Phys. 97 123305Google Scholar

    [5]

    Ferreira N P, Strauss J A, Human H G C 1982 Spectrochimica Acta Part B 37 273Google Scholar

    [6]

    Slevin P J, Harrison W W 1975 Appl. Spectrosc. Rev. 10 201Google Scholar

    [7]

    Roberto M, Smith H B, Verboncoeur J P 2003 IEEE Trans. Plasma- Sci. 31 1292Google Scholar

    [8]

    Wiese W L, Braulk J W, Danzmann K, Kock M 1989 Phys. Rev. A 39 2461Google Scholar

    [9]

    Miclea M, Kunze K, Heitmann U, Florek S, Franzke J, Niemax K 2005 J. Phys. D: Appl. Phys. 38 1709Google Scholar

    [10]

    Penache C, Miclea M, Bräuning-Demian A, Hohn O, Schössler S, T Jahnke T, Niemax K, Schmidt-Böcking H 2002 Plasma Sources Sci. Technol. 11 476Google Scholar

    [11]

    张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊 2012 24 245205Google Scholar

    Zhang Z H, Zhang G J, Shao X J, Chang Z S, Peng Z Y, Xu H 2012 Acta Phys. Sin. 24 245205Google Scholar

    [12]

    Lazzaroni C, Chabert P 2016 Plasma Sources Sci. Technol. 25 065015Google Scholar

    [13]

    Eggarter E 1975 J. Chem. Phys. 62 833Google Scholar

    [14]

    Eduardo C M, Moisan M 2010 Spectrochimica Acta B 65 199Google Scholar

    [15]

    Lymberopoulos D P, Economou D J 1993 J. Appl. Phys. 73 3668Google Scholar

    [16]

    Shon J W, Kushner M J 1994 J. Appl. Phys. 75 1883Google Scholar

    [17]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [18]

    Li Z, Zhao Z, Li X H 2012 Phys. Plasma 19 033510Google Scholar

    [19]

    Epstein I L, Gavrilovic M, Jovicevic S, Konjevic N, Lebedev Y A, Tatarinov A V 2014 Eur. Phys. J. D 68 334Google Scholar

    [20]

    Shkurenkov I A, Mankelevich Y A, Rakhimova T V 2009 Phys. Rev. E 79 046406Google Scholar

    [21]

    Moravej M, Yang X, Barankin M, Penelon J, Babayan S E, Hicks R F 2006 Plasma Source Sci. Tech. 15 204Google Scholar

    [22]

    Annemie B, Renaat G, Wim G 1999 Jpn. J. Appl. Phys. 38 4404Google Scholar

    [23]

    夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强 2011 60 015201Google Scholar

    Xia G Q, Xue W H, Chen M L, Zhu Y, Zhu G Q 2011 Acta Phys. Sin. 60 015201Google Scholar

    [24]

    何寿杰, 张钊, 赵雪娜, 李庆 2017 66 055101Google Scholar

    He S J, Zhang Z, Zhao Xue N, Li Q 2017 Acta Phys. Sin. 66 055101Google Scholar

    [25]

    付洋洋, 罗海云, 邹晓兵, 王强, 王新新 2014 63 095206Google Scholar

    Fu Y Y, Luo H Y, Zou X B, Wang Q, Wang X X 2014 Acta Phys. Sin. 63 095206Google Scholar

    [26]

    Fu Y Y, Verboncoeur J P, Christlieb A J, Wang X X 2017 Phys. Plasmas 24 083516Google Scholar

    [27]

    Hagelaar G J, Hoog F J, Kroesen G M 2000 Phys. Rev. E 62 1452

    [28]

    徐学基, 诸定昌 1996 气体放电物理 (上海: 复旦大学出版社)

    Xue X J, Zhu D C 1996 Physics of Gas Discharge (Shanghai: Fudan University Press) (in Chinese)

    [29]

    Fu Y Y, Krek J, Parsry G M, Verboncoeur J P 2018 Phys. Plasma 25 033505Google Scholar

    [30]

    Bogaerts A, Guenard R D, Smith B W 1997 Spectrochimica Acta Part B 52 219Google Scholar

    [31]

    Uzelac N I, Leis F 1992 Spectrochim. Acta B 47 877Google Scholar

    [32]

    Strauss J A, Ferreira N P, Human H G C 1982 Spectrochim Acta B 37 273

    [33]

    Bogaerts A, Gijbels R 1995 Phys. Rev. A 52 3743Google Scholar

    [34]

    Bánó G, Donkó Z 2012 Plasma Sources Sci. Technol. 21 035011Google Scholar

    [35]

    Bogaerts A, Gijbels R 2002 J. Appl. Phys. 92 6408Google Scholar

    [36]

    Kutasi K, Donkó Z 2000 J. Phys. D: Appl. Phys. 33 1081Google Scholar

    [37]

    Bogaerts A, Gijbels R, Vlcek J 1998 Spectrochimica Acta Part B 53 1517Google Scholar

  • [1] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究.  , 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [2] 齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁. 射频/直流驱动大气压氩气介质阻挡放电的一维仿真研究.  , 2022, 71(24): 245202. doi: 10.7498/aps.71.20221361
    [3] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟.  , 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [4] 王倩, 赵江山, 范元媛, 郭馨, 周翊. 不同缓冲气体中ArF准分子激光系统放电特性分析.  , 2020, 69(17): 174207. doi: 10.7498/aps.69.20200087
    [5] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟.  , 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [6] 张斯淇, 陆景彬, 刘晓静, 刘继平, 李宏, 梁禺, 张晓茹, 刘晗, 吴向尧, 郭义庆. 运用理想光子禁带模型实现对激发态原子系统演化的调控.  , 2018, 67(9): 094205. doi: 10.7498/aps.67.20172050
    [7] 姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军. 大气压介质阻挡辉光放电脉冲的阴极位降区特性及其影响因素的数值仿真.  , 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [8] 何寿杰, 张钊, 赵雪娜, 李庆. 微空心阴极维持辉光放电的时空特性.  , 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [9] 段志欣, 邱明辉, 姚翠霞. 采用量子波包方法和准经典轨线方法研究S(3P)+HD反应.  , 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [10] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究.  , 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [11] 赵朋程, 廖成, 杨丹, 钟选明, 林文斌. 基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究.  , 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [12] 何寿杰, 哈静, 刘志强, 欧阳吉庭, 何锋. 流体-亚稳态原子传输混合模型模拟空心阴极放电特性.  , 2013, 62(11): 115203. doi: 10.7498/aps.62.115203
    [13] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究.  , 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [14] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕. 大气压氩气介质阻挡辉光放电的一维仿真研究.  , 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [15] 黄仙山, 刘海莲, 羊亚平, 石云龙. 运用动态Lorentz库实现对激发态原子动力学特性的调控.  , 2011, 60(2): 024205. doi: 10.7498/aps.60.024205
    [16] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究.  , 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [17] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟.  , 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [18] 刘成森, 王德真. 空心圆管端点附近等离子体源离子注入过程中鞘层的时空演化.  , 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
    [19] 余建华, 赖建军, 黄建军, 王新兵, 丘军林. 槽型空心阴极放电中槽底阴极面的电子发射对放电的影响.  , 2002, 51(9): 2080-2085. doi: 10.7498/aps.51.2080
    [20] 赖建军, 余建华, 黄建军, 王新兵, 丘军林. 空心阴极直流放电的二维自洽模型描述和阴极溅射分析.  , 2001, 50(8): 1528-1533. doi: 10.7498/aps.50.1528
计量
  • 文章访问数:  8743
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-14
  • 修回日期:  2019-08-03
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回
Baidu
map