-
Horizontal tail is eliminated from the flying wing layout for improving the low observable and aerodynamic efficiency, resulting in degrading longitudinal maneuverability and fight stability. The low speed wind tunnel test study of improving the longitudinal aerodynamic characteristics of large aspect ratio flying wing model is carried out by using plasma flow control technology. The flying wing model has a leading-edge sweep angle of 34.5° and an aspect ratio of 5.79. The reasons for deteriorating the static maneuverability and stability of the flying wing model and the mechanism of plasma control of the flow field and longitudinal aerodynamic characteristics are studied by particle image velocimetry (PIV) flow visualization and static force measurement test. The control law of plasma control of the flight maneuverability and stability of the flying wing model is studied through flight test. The fact that the flow separation of the outer wing of the flying wing model occurs earlier than the inner wing and the wing is swept back can result in the forward movement of the aerodynamic center and the deterioration of the longitudinal static stability. The shock disturbance induced by plasma can suppress the flow separation of the suction surface, thereby extending the linear section of the lift curve of the model, preventing the aerodynamic center from moving forward, and improving the longitudinal static stability. When the wind speed is 50 m/s, the plasma control improves the horizontal rudder efficiency at a high angle of attack of the flying wing model, increases the maximum lift coefficient of the model by about 0.1, and postpones the stall angle of attack by more than 4° at different rudder angles. The plasma control allows the flying model to follow the command movement better while flying, increases the flying pitch limit angle from 11.5° to 15.1°, reduces the amplitude of longitudinal disturbance motion by 2°, and reduces the oscillation attenuation time from 15 to 8 s, thereby improving the longitudinal flight maneuverability and stability of the flying wing model. It can be seen that plasma flow control technology has great potential applications in improving the flight quality of flying wing layout.
-
Keywords:
- plasma /
- flow control /
- flying wing /
- wind tunnel test
[1] Wood R, Bauer S 2001 39th Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 8−11, 2001
[2] 王豪杰, 李杰, 周洲 2011 西北工业大学学报 29 789Google Scholar
Wang H J, Li J, Zhou Z 2011 J. Northwestern Polytech. Univ. 29 789Google Scholar
[3] Nangia R, Palmer M 2002 AIAA Atmospheric Flight Mechanics Conference and Exhibit Monterey, California, August 5−8, 2002
[4] 吴云, 李应红 2015 航空学报 36 381Google Scholar
Wu Y, Li Y H 2015 Acta Aeronaut. Astronaut. Sin 36 381Google Scholar
[5] Zhao Z J, Li J M, Zheng J G, Gui Y, Khoo B 2014 AIAA J. 53 1336Google Scholar
[6] 张鑫, 黄勇, 王勋年, 王万波, 唐坤, 李华星 2016 航空学报 37 1733Google Scholar
Zhang X, Huang Y, Wang X N, Wang W B, Tang K, Li H X 2016 Acta Aeronaut. Astronaut. Sin. 37 1733Google Scholar
[7] 史志伟, 杜海, 李铮, 陆纪椿, 蒋旋 2017 高压电器 53 72Google Scholar
Shi Z W, Du H, Li Z, Lu J C, Jiang X 2017 High Voltage Appar. 53 72Google Scholar
[8] 李应红, 吴云, 梁华, 宋慧敏, 贾敏 2010 科学通报 55 3060Google Scholar
Li Y H, Wu Y, Liang H, Song H M, Jia M 2010 Chin. Sci. Bull. 55 3060Google Scholar
[9] 杜海, 史志伟, 程克明, 李甘牛, 宋天威, 李铮 2016 航空学报 37 2102Google Scholar
Du H, Shi Z W, Cheng K M, Li G N, Song T W, Li Z 2016 Acta Aeronaut. Astronaut. Sin. 37 2102Google Scholar
[10] Thomas F, Corke T, Iqbal M, Kozlov A, Schatzman D 2009 AIAA J. 47 2169Google Scholar
[11] Xie Q, Gan W Y, Zhang C, Che X K, Yan P, Shao T 2019 IEEE Trans. Dielectr. Electr. Insul. 26 346Google Scholar
[12] Yadalaa S, Hehner M, Serpieri J, Benard N, Dorr P, Kloker M, Kotsonis M 2018 J. Fluid Mech. 844 R2Google Scholar
[13] Duong A, Midya S, Corke T, Hussain F, Thomas F 2019 11th International Symposium on Turbulence and Shear Flow Phenomena, Southampton, UK, July 30−August 2, 2019
[14] Corke T, Thomas F 2018 AIAA J. 56 1Google Scholar
[15] Akbıyık H, Akansu Y, Yavuz H 2017 Flow Meas. Instrum. 53 215Google Scholar
[16] Kwan P, Huang X 2019 IEEE Trans. Ind. Electron. 67 451Google Scholar
[17] Correale G, Kotsonis M 2017 Exp. Therm. Fluid Sci. 81 406Google Scholar
[18] Singhal A, Castaneda D, Webb N, Samimy M 2017 AIAA J. 56 1Google Scholar
[19] Moreau E, Debien A, Benard N, Zouzou N 2016 IEEE Trans. Plasma Sci. 44 2803Google Scholar
[20] Komuro A, Takashima K, Tanaka N, Konno K, Nonomura T, Kaneko T, Ando A Asai K 2018 Exp. Fluids 59 129Google Scholar
[21] Singh A, Durasiewicz C, Little J 2017 70th Annual Meeting of the APS Division of Fluid Dynamics Denver, Colorado, November 19−21, 2017
[22] Kaparos P, Koltsakidis S, Panagiotou P, Yakinthos K 2018 2018 Flow Control Conference Atlanta, Georgia, June 25−29, 2018
[23] Keisar D, Hasin D, Greenblatt D 2018 AIAA J. 57 1Google Scholar
[24] Patel M P, Ng T T, Vasudevan S, Corke T C, He C 2007 J. Aircr. 44 1264Google Scholar
[25] Matsuno T, Kawaguchi M, Yamada G, Kawazoe H 2013 29th AIAA Applied Aerodynamics Conference Honolulu, Hawaii, 27 June 27–30, 2011
[26] Kwak D, Nelson R 2010 5th Flow Control Conference Chicago, Illinois, June 28−July 01, 2010
[27] Nelson R, Corke T, He C, Othman H, Matsuno T, Patelk M, Ng T 2007 45th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 8−11, 2007
[28] Grundmann S, Frey M, Tropea C 2009 47th AIAA Aerospace Science Meeting Orlando, Florida, USA, January 5−8, 2009
[29] Friedrichs W 2014 Ph. D. Dissertation (Darmstadt: Darmstadt University of Technology)
[30] 牛中国, 胡秋琦, 梁华, 刘捷, 许相辉, 蒋甲利 2019 推进技术 40 2816Google Scholar
Niu Z G, Hu Q Q, Liang H, Liu J, Xu X H, Jiang J L 2019 J. Propul. Technol. 40 2816Google Scholar
-
图 19 V = 50 m/s时不同升降舵舵偏时等离子体控制试验曲线 (a) 升力系数曲线; (b) 阻力系数曲线; (c) 俯仰力矩系数曲线; (d) 滚转力矩系数曲线; (e) 偏航力矩系数曲线; (f) 侧力系数曲线
Figure 19. The plasma control test curve for different elevator deflection at V = 50 m/s: (a) Lift coefficient curves; (b) drag coefficient curves; (c) pitching moment coefficient curves; (d) roll moment coefficient curves; (e) yaw moment coefficient curves; (f) lateral force coefficient.
图 21 等离子体控制对飞翼模型纵向扰动运动的影响 (a) 不加等离子体控制俯仰角时间历程曲线; (b) 等离子体控制时俯仰角时间历程曲线; (c) 不加等离子体控制俯仰角速度时间历程; (d) 等离子体控制俯仰角速度时间历程
Figure 21. The influence of plasma control on the longitudinal disturbance motion of flying wing model: (a) Time history curve of pitch angle without plasma control; (b) time history curve of pitch angle with plasma control; (c) time history curve of pitch angle velocity without plasma control; (d) time history curve of pitch angle velocity with plasma control.
图 22 等离子体控制对飞翼模型纵向操纵控制的影响 (a)不加等离子体控制俯仰角时间历程曲线; (b) 等离子体控制时俯仰角时间历程曲线; (c)不加等离子体控制俯仰角速度时间历程; (d)等离子体控制俯仰角速度时间历程
Figure 22. The influence of plasma control on the longitudinal control of flying wing model: (a) Time history curve of pitch angle without plasma control; (b) time history curve of pitch angle with plasma control; (c) time history curve of pitch angle velocity without plasma control; (d) time history curve of pitch angle velocity with plasma control.
-
[1] Wood R, Bauer S 2001 39th Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 8−11, 2001
[2] 王豪杰, 李杰, 周洲 2011 西北工业大学学报 29 789Google Scholar
Wang H J, Li J, Zhou Z 2011 J. Northwestern Polytech. Univ. 29 789Google Scholar
[3] Nangia R, Palmer M 2002 AIAA Atmospheric Flight Mechanics Conference and Exhibit Monterey, California, August 5−8, 2002
[4] 吴云, 李应红 2015 航空学报 36 381Google Scholar
Wu Y, Li Y H 2015 Acta Aeronaut. Astronaut. Sin 36 381Google Scholar
[5] Zhao Z J, Li J M, Zheng J G, Gui Y, Khoo B 2014 AIAA J. 53 1336Google Scholar
[6] 张鑫, 黄勇, 王勋年, 王万波, 唐坤, 李华星 2016 航空学报 37 1733Google Scholar
Zhang X, Huang Y, Wang X N, Wang W B, Tang K, Li H X 2016 Acta Aeronaut. Astronaut. Sin. 37 1733Google Scholar
[7] 史志伟, 杜海, 李铮, 陆纪椿, 蒋旋 2017 高压电器 53 72Google Scholar
Shi Z W, Du H, Li Z, Lu J C, Jiang X 2017 High Voltage Appar. 53 72Google Scholar
[8] 李应红, 吴云, 梁华, 宋慧敏, 贾敏 2010 科学通报 55 3060Google Scholar
Li Y H, Wu Y, Liang H, Song H M, Jia M 2010 Chin. Sci. Bull. 55 3060Google Scholar
[9] 杜海, 史志伟, 程克明, 李甘牛, 宋天威, 李铮 2016 航空学报 37 2102Google Scholar
Du H, Shi Z W, Cheng K M, Li G N, Song T W, Li Z 2016 Acta Aeronaut. Astronaut. Sin. 37 2102Google Scholar
[10] Thomas F, Corke T, Iqbal M, Kozlov A, Schatzman D 2009 AIAA J. 47 2169Google Scholar
[11] Xie Q, Gan W Y, Zhang C, Che X K, Yan P, Shao T 2019 IEEE Trans. Dielectr. Electr. Insul. 26 346Google Scholar
[12] Yadalaa S, Hehner M, Serpieri J, Benard N, Dorr P, Kloker M, Kotsonis M 2018 J. Fluid Mech. 844 R2Google Scholar
[13] Duong A, Midya S, Corke T, Hussain F, Thomas F 2019 11th International Symposium on Turbulence and Shear Flow Phenomena, Southampton, UK, July 30−August 2, 2019
[14] Corke T, Thomas F 2018 AIAA J. 56 1Google Scholar
[15] Akbıyık H, Akansu Y, Yavuz H 2017 Flow Meas. Instrum. 53 215Google Scholar
[16] Kwan P, Huang X 2019 IEEE Trans. Ind. Electron. 67 451Google Scholar
[17] Correale G, Kotsonis M 2017 Exp. Therm. Fluid Sci. 81 406Google Scholar
[18] Singhal A, Castaneda D, Webb N, Samimy M 2017 AIAA J. 56 1Google Scholar
[19] Moreau E, Debien A, Benard N, Zouzou N 2016 IEEE Trans. Plasma Sci. 44 2803Google Scholar
[20] Komuro A, Takashima K, Tanaka N, Konno K, Nonomura T, Kaneko T, Ando A Asai K 2018 Exp. Fluids 59 129Google Scholar
[21] Singh A, Durasiewicz C, Little J 2017 70th Annual Meeting of the APS Division of Fluid Dynamics Denver, Colorado, November 19−21, 2017
[22] Kaparos P, Koltsakidis S, Panagiotou P, Yakinthos K 2018 2018 Flow Control Conference Atlanta, Georgia, June 25−29, 2018
[23] Keisar D, Hasin D, Greenblatt D 2018 AIAA J. 57 1Google Scholar
[24] Patel M P, Ng T T, Vasudevan S, Corke T C, He C 2007 J. Aircr. 44 1264Google Scholar
[25] Matsuno T, Kawaguchi M, Yamada G, Kawazoe H 2013 29th AIAA Applied Aerodynamics Conference Honolulu, Hawaii, 27 June 27–30, 2011
[26] Kwak D, Nelson R 2010 5th Flow Control Conference Chicago, Illinois, June 28−July 01, 2010
[27] Nelson R, Corke T, He C, Othman H, Matsuno T, Patelk M, Ng T 2007 45th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 8−11, 2007
[28] Grundmann S, Frey M, Tropea C 2009 47th AIAA Aerospace Science Meeting Orlando, Florida, USA, January 5−8, 2009
[29] Friedrichs W 2014 Ph. D. Dissertation (Darmstadt: Darmstadt University of Technology)
[30] 牛中国, 胡秋琦, 梁华, 刘捷, 许相辉, 蒋甲利 2019 推进技术 40 2816Google Scholar
Niu Z G, Hu Q Q, Liang H, Liu J, Xu X H, Jiang J L 2019 J. Propul. Technol. 40 2816Google Scholar
Catalog
Metrics
- Abstract views: 4779
- PDF Downloads: 75
- Cited By: 0