Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulations of the cathode falling characteristics and its influence factors in atmospheric pressure dielectric barrier glow discharge pulse

Yao Cong-Wei Ma Heng-Chi Chang Zheng-Shi Li Ping Mu Hai-Bao Zhang Guan-Jun

Citation:

Simulations of the cathode falling characteristics and its influence factors in atmospheric pressure dielectric barrier glow discharge pulse

Yao Cong-Wei, Ma Heng-Chi, Chang Zheng-Shi, Li Ping, Mu Hai-Bao, Zhang Guan-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A fluid model is built in this paper to describe and study the atmospheric pressure dielectric barrier glow discharge pulse in helium. The collision excitation and ionization reactions between electron and helium atom, heavy particles reactions, and Penning reaction between N2 and metastable He are taken into account in the fluid model. It is found that there are cathode falling, negative glow, Faraday dark, positive column and anode glow areas in atmospheric pressure glow discharge pulse, and the ranges of different areas are changing during the current falling edge. The ranges of cathode falling area are defined according to electron production balance position (definition 1, set as dc1) and the electrical field distribution around cathode (definition 2, set as dc2), respectively. Both dc1 and dc2 decreaseas the current grows to its peak in one discharge pulse, which reflects the transition from Townsend discharge to glow discharge. Compared with negative glow peak position, the boundary of cathode falling area by definition 1 is closer to cathode. However, the dc1 cannot reflect the cathode potential falling value and lose its definition after current peak moment. The dc2 can reflect the cathode potential falling value but it causes the overlapping between cathode falling and negative glow areas. At the current peak moment, the glow peak is located at the boundary of cathode falling area according to definition 2 while the glow peak is always located in the cathode falling area during the current falling edge. The cathode falling area characteristics can be influenced by different factors, e. g. applied voltage, secondary electron emission coefficient γ and N2 content. By changing applied voltage, it is found that the electrical potential dropping in cathode falling area increases as the average current density decreases, which indicates that the atmospheric pressure dielectric barrier glow discharge pulse is a subnormal glow discharge, and it is close to the normal glow discharge region. When γ dc1 and dc2 increase sharply with γ decreasing. When γ >0.02, dc1 and dc2 increase slowly with γ increasing. When N2 content is greater than 4 ppm, dc1 and dc2 first decrease and then increase slowly. The electrical potential falling of cathode is changeless with N2 content changing. However, the voltage across the gas gap decreases with N2 content changing because the Penning effect lowers the breakdown voltage of the gas gap. The spatial average current density has a highest value when N2 content is about 35 ppm, which also means that the spatial average charged particle density has the highest value in the same situation. Moreover, when the secondary electron emission coefficient is a constant, both dc1 and dc2 have negative linear relationship with the average current density.
      Corresponding author: Chang Zheng-Shi, changzhsh1984@163.com;gjzhang@mail.xjtu.edu.cn ; Zhang Guan-Jun, changzhsh1984@163.com;gjzhang@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51307133, 51521065, 51477135), the National Basic Research Program of China (Grant No. 2015CB251003), the China Postdoctoral Science Foundation (Grant No. 2016M590946), the Fundamental Research Fund for the Central Universities, China (Grant No. xjj2016003), and the State Key Laboratory of Electrical Insulation and Power Equipment, China (Grant No. EIPE16314).
    [1]

    Kogelschatz U 2002 IEEE Trans. Plasma Sci. 30 1400

    [2]

    Li D, Liu D X, He T T, Li Q S, Wang X H, Kong M G 2015 Phys. Plasmas 22 123501

    [3]

    Wang X X 2009 High Voltage Engineering 35 1 (in Chinese)[王新新2009高电压技术35 1]

    [4]

    Chiper A S, Rusu B G, Nastuta A V, Popa G 2009 IEEE Trans. Plasma Sci. 37 2098

    [5]

    Luo H Y, Liang Z, Lv B, Wang X X, Guan Z C, Wang L M 2007 Appl. Phys. Lett. 91 221504

    [6]

    Massines F, Ségur P, Gherardi N, Khamphan C, Ricard A 2003 Surf. Coat. Technol. 174-175 08

    [7]

    Yao C W, Chang Z S, Ma H C, Xu G M, Mu H B, Zhang G J 2016 IEEE Trans. Plasma Sci. 44 2576

    [8]

    Xu X J, Zhu D C 1996 Gas Discharge Physics (Shanghai:Fudan University Press) p121(in Chinese)[徐学基, 诸定昌1996气体放电物理(上海:复旦大学出版社)第121页]

    [9]

    Fu Y Y, Luo H Y, Zou X B, Wang X X 2015 Phys. Plasmas 22 023502

    [10]

    Maric D, Hartmann P, Malovic G, Donkó Z, Petrovic Z 2003 J. Phys. D:Appl. Phys. 36 2639

    [11]

    Shi J J, Kong M G 2003 J. Appl. Phys. 94 5504

    [12]

    Yao C W, Chang Z S, Zhang G J, Li P, Zhao A X 2015 High Voltage Engineering 41 2084 (in Chinese)[姚聪伟, 常正实, 张冠军, 李平, 赵艾萱2015高电压技术41 2084]

    [13]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722

    [14]

    Ellis H W, Pai R Y, Niel E W, Mason E A, Viehland L A 1976 At. Data Nucl. Data Tables 17 177

    [15]

    Yuan X, Raja L L 2003 IEEE Trans. Plasma Sci. 31 31 495

    [16]

    Tochikubo F, Chiba T, Watanabe T 1999 Jpn. J. Appl. Phys. 38 5244

    [17]

    Liu D X, Bruggeman P, Iza F, Rong M Z, Kong M G 2010 Plasma Sources Sci. Technol. 19 025018

    [18]

    Song X X, Tan Z Y, Chen B 2012 IEEE Trans. Plasma Sci. 40 3471

    [19]

    Lee D, Jin M P, Sang H H, Kim Y 2005 IEEE Trans. Plasma Sci. 33 949

    [20]

    Merrill P W 1917 Astrophysical Journal 46 771

    [21]

    Martens T, Bogaerts A 2008 Appl. Phys. Lett. 92 041504

    [22]

    Morrow R, Sato N 1999 J. Phys. D:Appl. Phys. 32 L20

    [23]

    Zhang Z H, Shao X J, Zhang G J, Li Y X, Peng Z Y 2012 Acta Phys. Sin. 61 045205 (in Chinese)[张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕2012 61 045205]

    [24]

    Zhang Z H, Zhang G J, Shao X J, Chang Z S, Peng Z Y, Xu H 2012 Acta Phys. Sin. 61 245205 (in Chinese)[张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊2012 61 245205]

    [25]

    Ricard A, Décomps P, Massines F 1999 Surf. Coat. Technol. 112 1

    [26]

    Lazarou C, Koukounis D, Chiper A S, Costin C, Topala I, Georghiou G E 2015 Plasma Sources Sci. Technol. 24 035012

    [27]

    Chang Z S, Jiang N, Zhang G J, Cao Z X 2014 J. Appl. Phys. 115 103301

  • [1]

    Kogelschatz U 2002 IEEE Trans. Plasma Sci. 30 1400

    [2]

    Li D, Liu D X, He T T, Li Q S, Wang X H, Kong M G 2015 Phys. Plasmas 22 123501

    [3]

    Wang X X 2009 High Voltage Engineering 35 1 (in Chinese)[王新新2009高电压技术35 1]

    [4]

    Chiper A S, Rusu B G, Nastuta A V, Popa G 2009 IEEE Trans. Plasma Sci. 37 2098

    [5]

    Luo H Y, Liang Z, Lv B, Wang X X, Guan Z C, Wang L M 2007 Appl. Phys. Lett. 91 221504

    [6]

    Massines F, Ségur P, Gherardi N, Khamphan C, Ricard A 2003 Surf. Coat. Technol. 174-175 08

    [7]

    Yao C W, Chang Z S, Ma H C, Xu G M, Mu H B, Zhang G J 2016 IEEE Trans. Plasma Sci. 44 2576

    [8]

    Xu X J, Zhu D C 1996 Gas Discharge Physics (Shanghai:Fudan University Press) p121(in Chinese)[徐学基, 诸定昌1996气体放电物理(上海:复旦大学出版社)第121页]

    [9]

    Fu Y Y, Luo H Y, Zou X B, Wang X X 2015 Phys. Plasmas 22 023502

    [10]

    Maric D, Hartmann P, Malovic G, Donkó Z, Petrovic Z 2003 J. Phys. D:Appl. Phys. 36 2639

    [11]

    Shi J J, Kong M G 2003 J. Appl. Phys. 94 5504

    [12]

    Yao C W, Chang Z S, Zhang G J, Li P, Zhao A X 2015 High Voltage Engineering 41 2084 (in Chinese)[姚聪伟, 常正实, 张冠军, 李平, 赵艾萱2015高电压技术41 2084]

    [13]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722

    [14]

    Ellis H W, Pai R Y, Niel E W, Mason E A, Viehland L A 1976 At. Data Nucl. Data Tables 17 177

    [15]

    Yuan X, Raja L L 2003 IEEE Trans. Plasma Sci. 31 31 495

    [16]

    Tochikubo F, Chiba T, Watanabe T 1999 Jpn. J. Appl. Phys. 38 5244

    [17]

    Liu D X, Bruggeman P, Iza F, Rong M Z, Kong M G 2010 Plasma Sources Sci. Technol. 19 025018

    [18]

    Song X X, Tan Z Y, Chen B 2012 IEEE Trans. Plasma Sci. 40 3471

    [19]

    Lee D, Jin M P, Sang H H, Kim Y 2005 IEEE Trans. Plasma Sci. 33 949

    [20]

    Merrill P W 1917 Astrophysical Journal 46 771

    [21]

    Martens T, Bogaerts A 2008 Appl. Phys. Lett. 92 041504

    [22]

    Morrow R, Sato N 1999 J. Phys. D:Appl. Phys. 32 L20

    [23]

    Zhang Z H, Shao X J, Zhang G J, Li Y X, Peng Z Y 2012 Acta Phys. Sin. 61 045205 (in Chinese)[张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕2012 61 045205]

    [24]

    Zhang Z H, Zhang G J, Shao X J, Chang Z S, Peng Z Y, Xu H 2012 Acta Phys. Sin. 61 245205 (in Chinese)[张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊2012 61 245205]

    [25]

    Ricard A, Décomps P, Massines F 1999 Surf. Coat. Technol. 112 1

    [26]

    Lazarou C, Koukounis D, Chiper A S, Costin C, Topala I, Georghiou G E 2015 Plasma Sources Sci. Technol. 24 035012

    [27]

    Chang Z S, Jiang N, Zhang G J, Cao Z X 2014 J. Appl. Phys. 115 103301

  • [1] Liu Zai-Hao, Liu Ying-Hua, Xu Bo-Ping, Yin Pei-Qi, Li Jing, Wang Yi-Shan, Zhao Wei, Duan Yi-Xiang, Tang Jie. Two-dimensional numerical simulation of pre-ionized direct-current glow discharge in atmospheric helium. Acta Physica Sinica, 2024, 73(1): 015101. doi: 10.7498/aps.73.20230712
    [2] Wang Zhen, Zhao Zhi-Hang, Fu Yang-Yang. Numerical simulation study on microdischarge via a unified fluid model. Acta Physica Sinica, 2024, 73(12): 125201. doi: 10.7498/aps.73.20240392
    [3] Zhao Li-Fen, Ha Jing, Wang Fei-Fan, Li Qing, He Shou-Jie. Simulation of hollow cathode discharge in oxygen. Acta Physica Sinica, 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [4] Ai Fei, Liu Zhi-Bing, Zhang Yuan-Tao. Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning. Acta Physica Sinica, 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [5] Qi Bing, Tian Xiao, Wang Jing, Wang Yi-Shan, Si Jin-Hai, Tang Jie. One-dimensional simulation of Ar dielectric barrier discharge driven by combined rf/dc sources at atmospheric pressure. Acta Physica Sinica, 2022, 71(24): 245202. doi: 10.7498/aps.71.20221361
    [6] Zhu Hai-Long, Shi Yu-Jun, Wang Jia-Wei, Zhang Zhi-Ling, Gao Yi-Ning, Zhang Feng-Bo. Formation and evolution of striation plasma in high-pressure argon glow discharge. Acta Physica Sinica, 2022, 71(14): 145201. doi: 10.7498/aps.71.20212394
    [7] He Shou-Jie, Zhou Jia, Qu Yu-Xiao, Zhang Bao-Ming, Zhang Ya, Li Qing. Simulation on complex dynamics of hollow cathode discharge in argon. Acta Physica Sinica, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [8] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [9] Li Xue-Chen, Geng Jin-Ling, Jia Peng-Ying, Wu Kai-Yue, Jia Bo-Yu, Kang Peng-Cheng. Rotating characteristics of glow discharge filament on liquid electrode surface. Acta Physica Sinica, 2018, 67(7): 075201. doi: 10.7498/aps.67.20172205
    [10] He Shou-Jie, Zhang Zhao, Zhao Xue-Na, Li Qing. Spatio-temporal characteristics of microhollow cathode sustained discharge. Acta Physica Sinica, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [11] Fu Yang-Yang, Luo Hai-Yun, Zou Xiao-Bing, Wang Qiang, Wang Xin-Xin. Simulation on similarity law of glow discharge in scale-down gaps of rod-plane electrode configuration. Acta Physica Sinica, 2014, 63(9): 095206. doi: 10.7498/aps.63.095206
    [12] Li Yuan, Mu Hai-Bao, Deng Jun-Bo, Zhang Guan-Jun, Wang Shu-Hong. Simulational study on streamer discharge in transformer oil under positive nanosecond pulse voltage. Acta Physica Sinica, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [13] Fu Yang-Yang, Luo Hai-Yun, Zou Xiao-Bing, Liu Kai, Wang Xin-Xin. Preliminary study on similarity of glow discharges in scale-down gaps. Acta Physica Sinica, 2013, 62(20): 205209. doi: 10.7498/aps.62.205209
    [14] Zhang Zeng-Hui, Zhang Guan-Jun, Shao Xian-Jun, Chang Zheng-Shi, Peng Zhao-Yu, Xu Hao. Modelling study of dielectric barrier glow discharge in Ar/NH3 mixture at atmospheric pressure. Acta Physica Sinica, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [15] Zhang Zeng-Hui, Shao Xian-Jun, Zhang Guan-Jun, Li Ya-Xi, Peng Zhao-Yu. One-dimensional simulation of dielectric barrier glow discharge in atmospheric pressure Ar. Acta Physica Sinica, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [16] Shen Xiang-Qian, Xie Quan, Xiao Qing-Quan, Chen Qian, Feng Yun. Computer simulation of the glow discharge characteristics in magnetron sputtering. Acta Physica Sinica, 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [17] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [18] Dong Li-Fang, Ran Jun-Xia, Mao Zhi-Guo. Temporal evolution of electron excited temperature in micro-discharge in argon at atmospheric pressure. Acta Physica Sinica, 2005, 54(5): 2167-2171. doi: 10.7498/aps.54.2167
    [19] Wang Jian-Hua, Jin Chuan-En. Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [20] Zhou Li-Na, Wang Xin-Bing. A fluid model for the simulation of discharges in microhollow cathode. Acta Physica Sinica, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
Metrics
  • Abstract views:  6400
  • PDF Downloads:  290
  • Cited By: 0
Publishing process
  • Received Date:  02 September 2016
  • Accepted Date:  14 October 2016
  • Published Online:  20 January 2017

/

返回文章
返回
Baidu
map